Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
CNS Neurosci Ther ; 30(6): e14814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887858

RESUMO

AIMS: Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-ß (Aß) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS: We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aß25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS: When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aß25-35-treated mice. When injected once a day over 7 days, it prevented Aß25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aß25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aß1-42 level in the hippocampus induced by Aß25-35. CONCLUSION: UW-MD-95 appeared as a potent neuroprotective compound in the Aß25-35 model of AD, with potentially an impact on Aß1-42 accumulation that could suggest a novel mechanism of neuroprotection.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Butirilcolinesterase , Inibidores da Colinesterase , Modelos Animais de Doenças , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Animais , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Camundongos , Fragmentos de Peptídeos/toxicidade , Masculino , Inibidores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos
2.
Phytother Res ; 38(2): 694-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011416

RESUMO

BACKGROUND AND AIM: By using an in vivo phenotypic screening assay in zebrafish, we identified Convolamine, a tropane alkaloid from Convulvus plauricalis, as a positive modulator of the sigma-1 receptor (S1R). The wfs1abKO zebrafish larva, a model of Wolfram syndrome, exhibits an increased visual-motor response due to a mutation in Wolframin, a protein involved in endoplasmic reticulum-mitochondria communication. We previously reported that ligand activating S1R, restored the cellular and behavioral deficits in patient fibroblasts and zebrafish and mouse models. EXPERIMENTAL PROCEDURES: We screened a library of 108 repurposing and natural compounds on zebrafish motor response. KEY RESULTS: One hit, the tropane alkaloid Convolamine, restored normal mobility in wfs1abKO larvae without affecting wfs1abWT controls. They did not bind to the S1R agonist/antagonist binding site nor dissociated S1R from BiP, an S1R activity assay in vitro, but behaved as a positive modulator by shifting the IC50 value of the reference agonist PRE-084 to lower values. Convolamine restored learning in Wfs1∆Exon8 , Dizocilpine-treated, and Aß25-35 -treated mice. These effects were observed at low ~1 mg/kg doses, not shared by Convolvine, the desmethyl metabolite, and blocked by an S1R antagonist. CONCLUSION AND IMPLICATIONS: Convolamine therefore acts as an S1R positive modulator and this pharmacological action is relevant to the traditional use of Shankhpushpi in memory and cognitive protection.


Assuntos
Alcaloides , Convolvulus , Receptores sigma , Humanos , Camundongos , Animais , Receptor Sigma-1 , Receptores sigma/genética , Receptores sigma/metabolismo , Peixe-Zebra/metabolismo , Alcaloides/farmacologia , Cognição
3.
Cell Death Dis ; 14(6): 387, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386014

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase ß1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase ß1 subunit.


Assuntos
Surdez , Síndrome de Wolfram , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Membrana Celular , Epitélio , Síndrome de Wolfram/genética
4.
Mol Ther Methods Clin Dev ; 27: 295-308, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320410

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disease resulting in deafness, optic atrophy, diabetes, and neurological disorders. Currently, no treatment is available for patients. The mutated gene, WFS1, encodes an endoplasmic reticulum (ER) protein, Wolframin. We previously reported that Wolframin regulated the ER-mitochondria Ca2+ transfer and mitochondrial activity by protecting NCS1 from degradation in patients' fibroblasts. We relied on a zebrafish model of WS, the wfs1ab KO line, to analyze the functional and behavioral impact of NCS1 overexpression as a novel therapeutic strategy. The wfs1ab KO line showed an increased locomotion in the visual motor and touch-escape responses. The absence of wfs1 did not impair the cellular unfolded protein response, in basal or tunicamycin-induced ER stress conditions. In contrast, metabolic analysis showed an increase in mitochondrial respiration in wfs1ab KO larvae. Interestingly, overexpression of NCS1 using mRNA injection restored the alteration of mitochondrial respiration and hyperlocomotion. Taken together, these data validated the wfs1ab KO zebrafish line as a pertinent experimental model of WS and confirmed the therapeutic potential of NCS1. The wfs1ab KO line therefore appeared as an efficient model to identify novel therapeutic strategies, such as gene or pharmacological therapies targeting NCS1 that will correct or block WS symptoms.

5.
Redox Biol ; 58: 102542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442393

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons. As a consequence, ALS patients display a locomotor disorder related to muscle weakness and progressive paralysis. Pathological mechanisms that participate in ALS involve deficient unfolded protein response, mitochondrial dysfunction and oxidative stress, among others. Finding a therapeutic target to break the vicious circle is particularly challenging. Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) chaperone that may be one of those targets. We here address and decipher the efficiency of S1R activation on a key ALS gene, TDP43, in zebrafish vertebrate model. While expression of mutant TDP43 (TDP43G348C) led to locomotor defects, treatment with the reference S1R agonist PRE-084 rescued motor performances in a zebrafish model. Treatment with the agonist ameliorated maximal mitochondrial respiration in the TDP43 context. We observed that TDP43G348C exacerbated ER stress induced by tunicamycin, resulting in increased levels of ER stress chaperone BiP and pro-apoptotic factor CHOP. Importantly, PRE-084 treatment in the same condition further heightened BiP levels but also EIF2α/ATF4 and NRF2 signalling cascades, both known to promote antioxidant protection during ER stress. Moreover, we showed that increasing NRF2 levels directly or by sulforaphane treatment rescued locomotor defects of TDP43G348C zebrafish. For the first time, we here provide the proof of concept that PRE-084 prevents mutant TDP43 toxicity by boosting ER stress response and antioxidant cascade through NRF2 signalling.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Estresse do Retículo Endoplasmático , Receptor Sigma-1
6.
Hum Mol Genet ; 31(16): 2711-2727, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35325133

RESUMO

Wolfram syndrome (WS) is a rare genetic disease characterized by diabetes, optic atrophy and deafness. Patients die at 35 years of age, mainly from respiratory failure or dysphagia. Unfortunately, there is no treatment to block the progression of symptoms and there is an urgent need for adequate research models. Here, we report on the phenotypical characterization of two loss-of-function zebrafish mutant lines: wfs1aC825X and wfs1bW493X. We observed that wfs1a deficiency altered the size of the ear and the retina of the fish. We also documented a decrease in the expression level of unfolded protein response (UPR) genes in basal condition and in stress condition, i.e. after tunicamycin treatment. Interestingly, both mutants lead to a decrease in their visual function measured behaviorally. These deficits were associated with a decrease in the expression level of UPR genes in basal and stress conditions. Interestingly, basal, ATP-linked and maximal mitochondrial respirations were transiently decreased in the wfs1b mutant. Taken together, these zebrafish lines highlight the critical role of wfs1a and wfs1b in UPR, mitochondrial function and visual physiology. These models will be useful tools to better understand the cellular function of Wfs1 and to develop novel therapeutic approaches for WS.


Assuntos
Atrofia Óptica , Síndrome de Wolfram , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Atrofia Óptica/genética , Fenótipo , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Sci Transl Med ; 14(631): eabh3763, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138910

RESUMO

The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.


Assuntos
Receptores sigma , Síndrome de Wolfram , Animais , Cálcio/metabolismo , Feminino , Humanos , Masculino , Camundongos , Receptores sigma/agonistas , Peixe-Zebra/metabolismo , Receptor Sigma-1
8.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948153

RESUMO

Rare genetic diseases are a group of pathologies with often unmet clinical needs. Even if rare by a single genetic disease (from 1/2000 to 1/more than 1,000,000), the total number of patients concerned account for approximatively 400 million peoples worldwide. Finding treatments remains challenging due to the complexity of these diseases, the small number of patients and the challenge in conducting clinical trials. Therefore, innovative preclinical research strategies are required. The zebrafish has emerged as a powerful animal model for investigating rare diseases. Zebrafish combines conserved vertebrate characteristics with high rate of breeding, limited housing requirements and low costs. More than 84% of human genes responsible for diseases present an orthologue, suggesting that the majority of genetic diseases could be modelized in zebrafish. In this review, we emphasize the unique advantages of zebrafish models over other in vivo models, particularly underlining the high throughput phenotypic capacity for therapeutic screening. We briefly introduce how the generation of zebrafish transgenic lines by gene-modulating technologies can be used to model rare genetic diseases. Then, we describe how zebrafish could be phenotyped using state-of-the-art technologies. Two prototypic examples of rare diseases illustrate how zebrafish models could play a critical role in deciphering the underlying mechanisms of rare genetic diseases and their use to identify innovative therapeutic solutions.


Assuntos
Doenças Genéticas Inatas , Modelos Genéticos , Doenças Raras , Peixe-Zebra , Animais , Pesquisa Biomédica , Modelos Animais de Doenças , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/terapia , Humanos , Doenças Raras/genética , Doenças Raras/metabolismo , Doenças Raras/terapia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681705

RESUMO

The sigma-1 receptor (S1R) is a highly conserved transmembrane protein highly enriched in mitochondria-associated endoplasmic reticulum (ER) membranes, where it interacts with several partners involved in ER-mitochondria Ca2+ transfer, activation of the ER stress pathways, and mitochondria function. We characterized a new S1R deficient zebrafish line and analyzed the impact of S1R deficiency on visual, auditory and locomotor functions. The s1r+25/+25 mutant line showed impairments in visual and locomotor functions compared to s1rWT. The locomotion of the s1r+25/+25 larvae, at 5 days post fertilization, was increased in the light and dark phases of the visual motor response. No deficit was observed in acoustic startle response. A critical role of S1R was shown in ER stress pathways and mitochondrial activity. Using qPCR to analyze the unfolded protein response genes, we observed that loss of S1R led to decreased levels of IRE1 and PERK-related effectors and increased over-expression of most of the effectors after a tunicamycin challenge. Finally, S1R deficiency led to alterations in mitochondria bioenergetics with decreased in basal, ATP-linked and non-mitochondrial respiration and following tunicamycin challenge. In conclusion, this new zebrafish model confirmed the importance of S1R activity on ER-mitochondria communication. It will be a useful tool to further analyze the physiopathological roles of S1R.


Assuntos
Mitocôndrias/metabolismo , Receptores sigma/metabolismo , Resposta a Proteínas não Dobradas , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Larva/fisiologia , Locomoção , Proteínas de Membrana/metabolismo , Fenótipo , Receptores sigma/química , Receptores sigma/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Receptor Sigma-1
10.
Front Cell Dev Biol ; 9: 675517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095146

RESUMO

Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration with 1/4,000 people being affected. The vision alteration primarily begins with rod photoreceptor degeneration, then the degenerative process continues with cone photoreceptor death. Variants in 71 genes have been linked to RP. One of these genes, PDE6a is responsible for RP43. To date no treatment is available and patients suffer from pronounced visual impairment in early childhood. We used the novel zebrafish pde6aQ70X mutant, generated by N-ethyl-N-nitrosourea at the European Zebrafish Resource Centre, to better understand how PDE6a loss of function leads to photoreceptor alteration. Interestingly, zebrafish pde6aQ70X mutants exhibited impaired visual function at 5 dpf as evidenced by the decrease in their visual motor response (VMR) compared to pde6a WT larvae. This impaired visual function progressed with time and was more severe at 21 dpf. These modifications were associated with an alteration of rod outer segment length at 5 and 21 dpf. In summary, these findings suggest that rod outer segment shrinkage due to Pde6a deficiency begins very early in zebrafish, progresses with time. The zebrafish pde6aQ70X mutant represents an ideal model of RP to screen relevant active small molecules that will block the progression of the disease.

11.
Eur Neuropsychopharmacol ; 39: 29-45, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32893057

RESUMO

The sigma-1 receptor (S1R) is a membrane-associated protein expressed in neurons and glia at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs). S1R interacts with different partners to regulate cellular responses, including ER stress, mitochondrial physiology and Ca2+ fluxes. S1R shapes cellular plasticity by directly modulating signaling pathways involved in inflammatory responses, cell survival and death. We here analyzed its impact on brain plasticity in vivo, in mice trained in a complex maze, the Hamlet test. The device, providing strong enriched environment (EE) conditions, mimics a small village. It has a central agora and streets expanding from it, leading to functionalized houses where animals can Drink, Eat, Hide, Run, or Interact. Animals were trained in groups, 4 h/day for two weeks, and their maze exploration and topographic memory could be analyzed. Several groups of mice were considered: non-trained vs. trained; repeatedly administered with saline vs. NE-100, a selective S1R antagonist; and wildtype vs. S1R KO mice. S1R inactivation altered maze exploration and prevented topographic learning. EE induced a strong plasticity measured through resilience to behavioral despair or to the amnesic effects of scopolamine, and increases in S1R expression and bdnf mRNA levels in the hippocampus; increases in neurogenesis (proliferation and maturation); and increases of histone acetylation in the hippocampus and cortex. S1R inactivation altered all these parameters significantly, showing that S1R activity plays a major role in physiological brain plasticity. As S1R is a major resident protein in MAMs, modulating ER responses and mitochondrial homeostasy, MAM physiology appeared impacted by enriched environment.


Assuntos
Meio Ambiente , Plasticidade Neuronal/fisiologia , Receptores sigma/metabolismo , Animais , Anisóis/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Propilaminas/farmacologia , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1
12.
Adv Exp Med Biol ; 1131: 699-718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646531

RESUMO

Calcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.


Assuntos
Membrana Celular , Estresse do Retículo Endoplasmático , Doenças Neurodegenerativas , Receptores sigma , Membrana Celular/metabolismo , Membrana Celular/patologia , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Receptores sigma/metabolismo , Receptor Sigma-1
13.
Brain Behav Immun ; 80: 697-710, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100368

RESUMO

In adult brain, the chemokine CXCL12 and its receptors CXCR4 and CXCR7 are expressed in neural progenitor and glial cells. Conditional Cxcl12 or Cxcr4 gene knockout in mice leads to severe alterations in neural progenitor proliferation, migration and differentiation. As adult hippocampal neurogenesis is involved in learning and memory processes, we investigated the long-term effects of reduced expression of CXCL12 or CXCR7 in heterozygous Cxcl12+/- and Cxcr7+/- animals (KD mice) on hippocampal neurogenesis, neuronal differentiation and memory processing. In Cxcl12 KD mice, Cxcr4 mRNA expression was reduced, whereas Cxcr7 was slightly increased. Conversely, in Cxcr7 KD mice, both Cxcr4 and Cxcl12 mRNA levels were decreased. Moreover, Cxcl12 KD animals showed marked behavioral and learning deficits that were associated with impaired neurogenesis in the hippocampus. Conversely, Cxcr7 KD animals showed mild learning deficits with normal neurogenesis, but reduced cell differentiation, measured with doublecortin immunolabeling. These findings suggested that a single Cxcl12 or Cxcr7 allele might not be sufficient to maintain the hippocampal niche functionality throughout life, and that heterozygosity might represent a susceptibility factor for memory dysfunction progression.


Assuntos
Quimiocina CXCL12/metabolismo , Aprendizagem/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptores CXCR/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Quimiocina CXCL12/genética , Quimiocinas/metabolismo , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Neuroglia/fisiologia , Receptores CXCR/genética , Transdução de Sinais
14.
Pharmacol Res ; 144: 315-330, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31048034

RESUMO

The sigma-1 (σ1) receptor is an endoplasmic reticulum (ER) chaperone protein, enriched in mitochondria-associated membranes. Its activation triggers physiological responses to ER stress and modulate Ca2+ mobilization in mitochondria. Small σ1 agonist molecules activate the protein and act behaviorally as antidepressant, anti-amnesic and neuroprotective agents. Recently, several chemically unrelated molecules were shown to be σ1 receptor positive modulators (PMs), with some of them a clear demonstration of their allostericity. We here examined whether a σ1 PM also shows neuroprotective potentials in pharmacological and genetic models of Alzheimer's disease (AD). For this aim, we describe (±)-2-(3-chlorophenyl)-3,3,5,5-tetramethyl-2-oxo-[1,4,2]-oxazaphosphinane (OZP002) as a novel σ1 PM. OZP002 does not bind σ1 sites but induces σ1 effects in vivo and boosts σ1 agonist activity. OZP002 was antidepressant in the forced swim test and its effect was blocked by the σ1 antagonist NE-100 or in σ1 receptor knockout mice. It potentiated the antidepressant effect of the σ1 agonist igmesine. In mice tested for Y-maze alternation or passive avoidance, OZP002 prevented scopolamine-induced learning deficits, in a NE-100 sensitive manner. Pre-administered IP before an ICV injection of amyloid Aß25-35 peptide, a pharmacological model of Alzheimer's disease, OZP002 prevented the learning deficits induced by the peptide after one week in the Y-maze, passive avoidance and novel object tests. Biochemical analyses of the mouse hippocampi showed that OZP002 significantly decreased Aß25-35-induced increases in reactive oxygen species, lipid peroxidation, and increases in Bax, TNFα and IL-6 levels. Immunohistochemically, OZP002 prevented Aß25-35-induced reactive astrogliosis and microgliosis in the hippocampus. It also alleviated Aß25-35-induced decreases in synaptophysin level and choline acetyltransferase activity. Moreover, chronically administered in APPswe mice during 2 months, OZP002 prevented learning deficits (in all tests plus place learning in the water-maze) and increased biochemical markers. This study shows that σ1 PM with high neuropotective potential can be identified, combining pharmacological efficacy, selectivity and therapeutic safety, and identifies a novel promising compound, OZP002.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Receptores sigma/agonistas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores sigma/genética , Receptores sigma/metabolismo , Receptor Sigma-1
15.
Curr Protoc Mouse Biol ; 8(2): e43, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29927555

RESUMO

Here we provide instructions to measure topographic memory in mice using the Hamlet test, a complex environment. The apparatus mimics a small hamlet with a central agora and five houses, which are functionalized since mice can drink, eat pellets, hide within a small maze, run in an activity wheel, or interact with a stranger mouse behind a grid. The houses are interconnected through a network of streets in a five-arm star shape, and a video tracking system takes information from the activity in each house or follows a single mouse by trajectometry. Training the mice in the Hamlet, in groups for several hours per day over several days or weeks, allows consolidation of topographic memory (i.e., route learning involving both allocentric and egocentric strategies). Analysis of topographic memory can be performed a posteriori in a probe test by depriving mice of water or food and measuring their ability to efficiently reach the "eat" or "drink" house. Control groups include mice tested in non-deprived condition and mice naïve to the Hamlet and tested in deprived or non-deprived conditions. The present article details the apparatus, procedures, and protocols that can be used to reliably habituate mice in this complex environment and measure topographic memory. © 2018 by John Wiley & Sons, Inc.


Assuntos
Camundongos/fisiologia , Memória Espacial , Navegação Espacial , Animais
16.
Neurobiol Learn Mem ; 149: 118-134, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458097

RESUMO

The Hamlet test is an innovative device providing a complex environment for testing topographic memory in mice. Animals were trained in groups for weeks in a small village with a central agora, streets expanding from it towards five functionalized houses, where they can drink, eat, hide, run, interact with a stranger mouse. Memory was tested by depriving mice from water or food and analyzing their ability to locate the Drink/Eat house. Exploration and memory were analyzed in different strains, gender, and after different training periods and delays. After 2 weeks training, differences in exploration patterns were observed between strains, but not gender. Neuroanatomical structures activated by training, identified using FosB/ΔFosB immunolabelling, showed an involvement of the hippocampus-subiculum-parahippocampal gyrus axis and dopaminergic structures. Training increased hippocampal neurogenesis (cell proliferation and neuronal maturation) and modified the amnesic efficacy of muscarinic or nicotinic cholinergic antagonists. Moreover, topographical disorientation in Alzheimer's disease was addressed using intracerebroventricular injection of amyloid ß25-35 peptide in trained mice. When retested after 7 days, Aß25-35-treated mice showed memory impairment. The Hamlet test specifically allows analysis of topographical memory in mice, based on complex environment. It offers an innovative tool for various ethological or pharmacological research needs. For instance, it allowed to examine topographical disorientation, a warning sign in Alzheimer's disease.


Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Neurogênese/fisiologia , Memória Espacial/fisiologia , Animais , Antagonistas Colinérgicos/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Antagonistas Muscarínicos/farmacologia , Neurogênese/efeitos dos fármacos , Fatores Sexuais , Memória Espacial/efeitos dos fármacos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA