Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Mol Life Sci ; 80(12): 355, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947896

RESUMO

The coupling between mechanical forces and modulation of cell signalling pathways is essential for tissue plasticity and their adaptation to changing environments. Whilst the number of physiological and pathological relevant roles of mechanotransduction has been rapidly expanding over the last decade, studies have been mostly focussing on a limited number of mechanosensitive pathways, which include for instance Hippo/YAP/TAZ pathway, Wnt/ß-catenin or the stretch-activated channel Piezo. However, the recent development and spreading of new live sensors has provided new insights into the contribution of ERK pathway in mechanosensing in various systems, which emerges now as a fast and modular mechanosensitive pathway. In this review, we will document key in vivo and in vitro examples that have established a clear link between cell deformation, mechanical stress and modulation of ERK signalling, comparing the relevant timescale and mechanical stress. We will then discuss different molecular mechanisms that have been proposed so far, focussing on the epistatic link between mechanics and ERK and discussing the relevant cellular parameters affecting ERK signalling. We will finish by discussing the physiological and the pathological consequences of the link between ERK and mechanics, outlining how this interplay is instrumental for self-organisation and long-range cell-cell coordination.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular/fisiologia , Transdução de Sinais
2.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36944420

RESUMO

The oocyte must grow and mature before fertilization, thanks to a close dialogue with the somatic cells that surround it. Part of this communication is through filopodia-like protrusions, called transzonal projections (TZPs), sent by the somatic cells to the oocyte membrane. To investigate the contribution of TZPs to oocyte quality, we impaired their structure by generating a full knockout mouse of the TZP structural component myosin-X (MYO10). Using spinning disk and super-resolution microscopy combined with a machine-learning approach to phenotype oocyte morphology, we show that the lack of Myo10 decreases TZP density during oocyte growth. Reduction in TZPs does not prevent oocyte growth but impairs oocyte-matrix integrity. Importantly, we reveal by transcriptomic analysis that gene expression is altered in TZP-deprived oocytes and that oocyte maturation and subsequent early embryonic development are partially affected, effectively reducing mouse fertility. We propose that TZPs play a role in the structural integrity of the germline-somatic complex, which is essential for regulating gene expression in the oocyte and thus its developmental potential.


Assuntos
Folículo Ovariano , Pseudópodes , Feminino , Animais , Camundongos , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Oogênese/fisiologia , Células Germinativas , Miosinas
3.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660922

RESUMO

Meiotic maturation is a crucial step of oocyte formation, allowing its potential fertilization and embryo development. Elucidating this process is important for both fundamental research and assisted reproductive technology. However, few computational tools based on non-invasive measurements are available to characterize oocyte meiotic maturation. Here, we develop a computational framework to phenotype oocytes based on images acquired in transmitted light. We trained neural networks to segment the contour of oocytes and their zona pellucida using oocytes from diverse species. We defined a comprehensive set of morphological features to describe an oocyte. These steps were implemented in an open-source Fiji plugin. We present a feature-based machine learning pipeline to recognize oocyte populations and determine morphological differences between them. We first demonstrate its potential to screen oocytes from different strains and automatically identify their morphological characteristics. Its second application is to predict and characterize the maturation potential of oocytes. We identify the texture of the zona pellucida and cytoplasmic particle size as features to assess mouse oocyte maturation potential and tested whether these features were applicable to the developmental potential of human oocytes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células do Cúmulo , Oócitos , Animais , Feminino , Humanos , Aprendizado de Máquina , Camundongos , Oogênese/genética , Zona Pelúcida
4.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722900

RESUMO

Off-center spindle positioning in mammalian oocytes enables asymmetric divisions in size, which are important for subsequent embryogenesis. The migration of the meiosis I spindle from the oocyte center to its cortex is mediated by F-actin. Specifically, an F-actin cage surrounds the microtubule spindle and applies forces to it. To better understand how F-actin transmits forces to the spindle, we studied a potential direct link between F-actin and microtubules. For this, we tested the implication of myosin-X, a known F-actin and microtubule binder involved in spindle morphogenesis and/or positioning in somatic cells, amphibian oocytes and embryos. Using a mouse strain conditionally invalidated for myosin-X in oocytes and by live-cell imaging, we show that myosin-X is not localized on the spindle, and is dispensable for spindle and F-actin assembly. It is not required for force transmission as spindle migration and chromosome alignment occur normally. More broadly, myosin-X is dispensable for oocyte developmental potential and female fertility. We therefore exclude a role for myosin-X in transmitting F-actin-mediated forces to the spindle, opening new perspectives regarding this mechanism in mouse oocytes, which differ from most mitotic cells.


Assuntos
Morfogênese/genética , Morfogênese/fisiologia , Miosinas/genética , Miosinas/metabolismo , Oócitos/fisiologia , Citoesqueleto de Actina , Actinas/genética , Animais , Cromossomos , Feminino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos , Oócitos/citologia , Oogênese , Fuso Acromático , Transcriptoma , Xenopus
5.
Nat Commun ; 11(1): 1649, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245998

RESUMO

Human and mouse oocytes' developmental potential can be predicted by their mechanical properties. Their development into blastocysts requires a specific stiffness window. In this study, we combine live-cell and computational imaging, laser ablation, and biophysical measurements to investigate how deregulation of cortex tension in the oocyte contributes to early developmental failure. We focus on extra-soft cells, the most common defect in a natural population. Using two independent tools to artificially decrease cortical tension, we show that chromosome alignment is impaired in extra-soft mouse oocytes, despite normal spindle morphogenesis and dynamics, inducing aneuploidy. The main cause is a cytoplasmic increase in myosin-II activity that could sterically hinder chromosome capture. We describe here an original mode of generation of aneuploidies that could be very common in oocytes and could contribute to the high aneuploidy rate observed during female meiosis, a leading cause of infertility and congenital disorders.


Assuntos
Aneuploidia , Proteínas do Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Oócitos/patologia , Animais , Segregação de Cromossomos , Feminino , Infertilidade/etiologia , Meiose , Camundongos , Oogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA