Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 15(12): e1007564, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860665

RESUMO

In comparison to protein coding sequences, the impact of mutation and natural selection on the sequence and function of non-coding (ncRNA) genes is not well understood. Many ncRNA genes are narrowly distributed to only a few organisms, and appear to be rapidly evolving. Compared to protein coding sequences, there are many challenges associated with assessment of ncRNAs that are not well addressed by conventional phylogenetic approaches, including: short sequence length, lack of primary sequence conservation, and the importance of secondary structure for biological function. Riboswitches are structured ncRNAs that directly interact with small molecules to regulate gene expression in bacteria. They typically consist of a ligand-binding domain (aptamer) whose folding changes drive changes in gene expression. The glycine riboswitch is among the most well-studied due to the widespread occurrence of a tandem aptamer arrangement (tandem), wherein two homologous aptamers interact with glycine and each other to regulate gene expression. However, a significant proportion of glycine riboswitches are comprised of single aptamers (singleton). Here we use graph clustering to circumvent the limitations of traditional phylogenetic analysis when studying the relationship between the tandem and singleton glycine aptamers. Graph clustering enables a broader range of pairwise comparison measures to be used to assess aptamer similarity. Using this approach, we show that one aptamer of the tandem glycine riboswitch pair is typically much more highly conserved, and that which aptamer is conserved depends on the regulated gene. Furthermore, our analysis also reveals that singleton aptamers are more similar to either the first or second tandem aptamer, again based on the regulated gene. Taken together, our findings suggest that tandem glycine riboswitches degrade into functional singletons, with the regulated gene(s) dictating which glycine-binding aptamer is conserved.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Glicina/química , Riboswitch/genética , Bacillaceae/classificação , Bacillaceae/genética , Biologia Computacional , Evolução Molecular , Genoma Bacteriano , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Filogenia , Vibrionaceae/classificação , Vibrionaceae/genética
2.
Hum Genomics ; 8: 8, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24885782

RESUMO

BACKGROUND: Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes. RESULTS: We present Quadruplex forming 'G'-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively. CONCLUSIONS: We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5'- and 3'-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means to build datasets that can be filtered and categorized in a variety of biological dimensions for more targeted studies in order to better understand the roles that G-quadruplexes play.


Assuntos
Processamento Alternativo/genética , Evolução Molecular , Quadruplex G , Motivos de Nucleotídeos/genética , Animais , Sequência de Bases , Sequência Conservada/genética , Humanos , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA