Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biosens Bioelectron ; 165: 112389, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729511

RESUMO

In this study, we investigated the biophysical interaction between cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and CD80. CTLA-4 is a key molecule in immunosuppression, and CD80 is a costimulatory receptor promoting T cell activation. We observed that after cell-cell contact was established between breast cancer cells and antigen presenting cells (APCs), CTLA-4 expressed on the breast cancer cells bind to CD80 expressed on the APCs, and underwent trans-endocytosis to deplete CD80. Force measurement and live cell imaging revealed that upon binding to CD80, forces generated by breast cancer cells and transmitted via CTLA-4 were sufficiently strong to displace CD80 from the surface of APCs to be internalized by breast cancer cells. We further demonstrated that because of the force-dependent trans-endocytosis of CD80, the capacity of APCs to activate T cells was significantly attenuated. Furthermore, inhibiting force generation in cancer cells would increase the T cell activating capacity of APCs. Our results provide a possible mechanism behind the immunosuppression commonly seen in breast cancer patients, and may lead to a new strategy to restore anti-tumor immunity by inhibiting pathways of force-generation.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Antígeno B7-2 , Antígenos CD28 , Endocitose , Humanos , Ativação Linfocitária , Linfócitos T
2.
Sci Adv ; 5(12): eaaw1715, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844658

RESUMO

Follicular helper T (TFH) cells are essential for generating protective humoral immunity. To date, microRNAs (miRNAs) have emerged as important players in regulating TFH cell biology. Here, we show that loss of miR-23~27~24 clusters in T cells resulted in elevated TFH cell frequencies upon different immune challenges, whereas overexpression of this miRNA family led to reduced TFH cell responses. Mechanistically, miR-23~27~24 clusters coordinately control TFH cells through targeting a network of genes that are crucial for TFH cell biology. Among them, thymocyte selection-associated HMG-box protein (TOX) was identified as a central transcription regulator in TFH cell development. TOX is highly up-regulated in both mouse and human TFH cells in a BCL6-dependent manner. In turn, TOX promotes the expression of multiple molecules that play critical roles in TFH cell differentiation and function. Collectively, our results establish a key miRNA regulon that maintains optimal TFH cell responses for resultant humoral immunity.


Assuntos
Diferenciação Celular/genética , Imunidade Humoral/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T/imunologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Imunidade Humoral/imunologia , Ativação Linfocitária/imunologia , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo
3.
J Clin Invest ; 127(2): 530-542, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067667

RESUMO

MicroRNAs (miRs) are tightly regulated in the immune system, and aberrant expression of miRs often results in hematopoietic malignancies and autoimmune diseases. Previously, it was suggested that elevated levels of miR-27 in T cells isolated from patients with multiple sclerosis facilitate disease progression by inhibiting Th2 immunity and promoting pathogenic Th1 responses. Here we have demonstrated that, although mice with T cell-specific overexpression of miR-27 harbor dysregulated Th1 responses and develop autoimmune pathology, these disease phenotypes are not driven by miR-27 in effector T cells in a cell-autonomous manner. Rather, dysregulation of Th1 responses and autoimmunity resulted from a perturbed Treg compartment. Excessive miR-27 expression in murine T cells severely impaired Treg differentiation. Moreover, Tregs with exaggerated miR-27-mediated gene regulation exhibited diminished homeostasis and suppressor function in vivo. Mechanistically, we determined that miR-27 represses several known as well as previously uncharacterized targets that play critical roles in controlling multiple aspects of Treg biology. Collectively, our data show that miR-27 functions as a key regulator in Treg development and function and suggest that proper regulation of miR-27 is pivotal to safeguarding Treg-mediated immunological tolerance.


Assuntos
Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Tolerância Imunológica , MicroRNAs/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Células Th1/imunologia , Células Th2/imunologia
4.
J Exp Med ; 213(2): 235-49, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26834155

RESUMO

Coordinated repression of gene expression by evolutionarily conserved microRNA (miRNA) clusters and paralogs ensures that miRNAs efficiently exert their biological impact. Combining both loss- and gain-of-function genetic approaches, we show that the miR-23∼27∼24 clusters regulate multiple aspects of T cell biology, particularly helper T (Th) 2 immunity. Low expression of this miRNA family confers proper effector T cell function at both physiological and pathological settings. Further studies in T cells with exaggerated regulation by individual members of the miR-23∼27∼24 clusters revealed that miR-24 and miR-27 collaboratively limit Th2 responses through targeting IL-4 and GATA3 in both direct and indirect manners. Intriguingly, although overexpression of the entire miR-23 cluster also negatively impacts other Th lineages, enforced expression of miR-24, in contrast to miR-23 and miR-27, actually promotes the differentiation of Th1, Th17, and induced regulatory T cells, implying that under certain conditions, miRNA families can fine tune the biological effects of their regulation by having individual members antagonize rather than cooperate with each other. Together, our results identify a miRNA family with important immunological roles and suggest that tight regulation of miR-23∼27∼24 clusters in T cells is required to maintain optimal effector function and to prevent aberrant immune responses.


Assuntos
MicroRNAs/genética , MicroRNAs/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Fator de Transcrição GATA3/biossíntese , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Interleucina-4/biossíntese , Interleucina-4/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Transgênicos , Família Multigênica , Fenótipo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th2/citologia , Células Th2/imunologia
5.
J Cell Sci ; 126(Pt 19): 4406-13, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886939

RESUMO

Microtubule-organizing centers such as the γ-tubulin ring complex (γ-TuRC) act as a template for polarized growth and regulation of microtubules that are essential for diverse cellular structures and processes in eukaryotes. New structural models of the budding yeast γ-tubulin small complex (γ-TuSC) of the γ-TuRC combined with functional studies done in multiple eukaryotes are revealing the first mechanistic clues into control of microtubule nucleation and organization. Cross-species studies of human and budding yeast γ-TuSC proteins in fission yeast revealed conserved and divergent structural and functional features of the γ-TuSC. We show genetically that GCP3/Spc98 function is fully conserved with Alp6 across species but that functional differences exist between GCP2/Spc97 and Alp4. By further analysis of human γ-TuSC proteins, we found that GCP3 assembles normally into the >2000 kDa fission yeast γ-TuRC and that the GCP3 gene replaces fission yeast alp6. Interestingly, human GCP2 replaces the essential alp4 gene but is unable to rescue a normally recessive G1 defect of the alp4-1891 allele that results in loss of γ-TuRC from poles in subsequent cell cycles. Biochemically, GCP2 incorporation into fission yeast γ-TuRC is limited in the presence of Alp4; instead, the bulk of GCP2 fractionates as smaller complexes. By generating a functional Alp4-GCP2 chimeric protein we determined that the GCP2 N-terminal domain limits its ability to fully displace or compete with Alp4 during γ-TuRC assembly. Our findings have broad importance for understanding the essential domains of γ-TuSC proteins in the γ-TuRC mechanism.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
6.
Cell Cycle ; 12(5): 842-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23388459

RESUMO

The γ-tubulin ring complex (γ-TuRC) is a key part of microtubule-organizing centers (MTOCs) that control microtubule polarity, organization and dynamics in eukaryotes. Understanding regulatory mechanisms of γ-TuRC function is of fundamental importance, as this complex is central to many cellular processes, including chromosome segregation, fertility, neural development, T-cell cytotoxicity and respiration. The fission yeast microtubule motor kinesin-14 Pkl1 regulates mitosis by binding to the γ-tubulin small complex (γ-TuSC), a subunit of γ-TuRC. Here we investigate the binding mechanism of Pkl1 to γ-TuSC and its functional consequences using genetics, biochemistry, peptide assays and cell biology approaches in vivo and in vitro. We identify two critical elements in the Tail domain of Pkl1 that mediate γ-TuSC binding and trigger release of γ-tubulin from γ-TuRC. Such action disrupts the MTOC and results in failed mitotic spindle assembly. This study is the first demonstration that a motor protein directly affects the structural composition of the γ-TuRC, and we provide details of this mechanism that may be of broad biological importance.


Assuntos
Cinesinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Cinesinas/química , Modelos Biológicos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/química , Fuso Acromático/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA