Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mov Disord ; 38(3): 386-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807624

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD). OBJECTIVE: The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD. METHODS: Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers. RESULTS: A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was ~1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (≤98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (≤93%), cerebrospinal fluid total LRRK2 (≤50%), and urine bis (monoacylglycerol) phosphate (≤74%). CONCLUSIONS: At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. © 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Leucócitos Mononucleares/metabolismo , Voluntários Saudáveis , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Biomarcadores/metabolismo , Mutação
2.
Neurol Ther ; 12(2): 597-617, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811812

RESUMO

INTRODUCTION: Pridopidine is a highly selective sigma-1 receptor (S1R) agonist in development for the treatment of Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Pridopidine's activation of S1R enhances cellular processes that are crucial for neuronal function and survival but are impaired in neurodegenerative diseases. Human brain positron emission tomography (PET) imaging studies show that at the therapeutic dose of 45 mg twice daily (bid), pridopidine selectively and robustly occupies the S1R. We conducted concentration-QTc (C-QTc) analyses to assess pridopidine's effect on the QT interval and investigated its cardiac safety profile. METHODS: C-QTc analysis was conducted using data from PRIDE-HD, a phase 2, placebo-controlled trial evaluating four pridopidine doses (45, 67.5, 90, 112.5 mg bid) or placebo over 52 weeks in HD patients. Triplicate electrocardiograms (ECGs) with simultaneous plasma drug concentrations were determined in 402 patients with HD. The effect of pridopidine on the Fridericia-corrected QT interval (QTcF) was evaluated. Cardiac-related adverse events (AEs) were analyzed from PRIDE-HD alone and from pooled safety data of three double-blind, placebo-controlled trials with pridopidine in HD (HART, MermaiHD, and PRIDE-HD). RESULTS: A concentration-dependent effect of pridopidine on the change from baseline in the Fridericia-corrected QT interval (ΔQTcF) was observed, with a slope of 0.012 ms (ms) per ng/mL (90% confidence interval (CI), 0.0109-0.0127). At the therapeutic dose of 45 mg bid, the predicted placebo-corrected ΔQTcF (ΔΔQTcF) was 6.6 ms (upper bound 90% CI, 8.0 ms), which is below the level of concern and not clinically relevant. Analysis of pooled safety data from three HD trials demonstrates that at 45 mg bid, pridopidine cardiac-related AE frequencies are similar to those with placebo. No patients reached a QTcF of 500 ms and no patients experienced torsade de pointes (TdP) at any pridopidine dose. CONCLUSIONS: At the 45 mg bid therapeutic dose, pridopidine demonstrates a favorable cardiac safety profile, with an effect on the QTc interval that is below the level of concern and not clinically relevant. TRIAL REGISTRATION: PRIDE-HD (TV7820-CNS-20002) trial registration: ClinicalTrials.gov identifier, NCT02006472, EudraCT 2013-001888-23; HART (ACR16C009) trial registration: ClinicalTrials.gov identifier, NCT00724048; MermaiHD (ACR16C008) trial registration: ClinicalTrials.gov identifier, NCT00665223, EudraCT No. 2007-004988-22.

3.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719741

RESUMO

Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Nós Neurofibrosos/metabolismo , Potássio/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo
4.
Clin Transl Sci ; 15(8): 2010-2023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649245

RESUMO

RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)-penetrant, small-molecule, reversible inhibitor of RIPK1. In three early-stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well-tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof-of-mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long-term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early-stage clinical trials. The dose-limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1-inhibitors, suggesting that these toxicities are compound-specific (related to SAR443060) rather than RIPK1 pathway-specific.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Proteína Serina-Treonina Quinases de Interação com Receptores , Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
5.
Brain ; 145(11): 3943-3952, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678509

RESUMO

Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease-and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the CNS are lacking. Therapies with potential to remyelinate the CNS constitute one of the most promising and highly anticipated therapeutic developments in the pipeline to treat multiple sclerosis and other demyelinating diseases. The optic nerve has been proposed as an informative pathway to monitor remyelination in animals and human subjects. Recent clinical trials using visual evoked potential have had promising results, but without unequivocal evidence about the cellular and molecular basis for signal changes on visual evoked potential, the interpretation of these trials is constrained. The visual evoked potential was originally developed and used in the clinic as a diagnostic tool but its use as a quantitative method for assessing therapeutic response requires certification of its biological specificity. Here, using the tools of experimental pathology we demonstrate that quantitative measurements of myelination using both histopathological measures of nodal structure and ultrastructural assessments correspond to visual evoked potential latency in both inflammatory and chemical models of demyelination. Visual evoked potential latency improves after treatment with a tool remyelinating compound (clemastine), mirroring both quantitative and qualitative myelin assessment. Furthermore, clemastine does not improve visual evoked potential latency following demyelinating injury when administered to a transgenic animal incapable of forming new myelin. Therefore, using the capacity for therapeutic enhancement and biological loss of function we demonstrate conclusively that visual evoked potential measures myelin status and is thereby a validated tool for preclinical verification of remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Animais , Potenciais Evocados Visuais , Clemastina/uso terapêutico , Bainha de Mielina/metabolismo , Esclerose Múltipla/patologia , Biomarcadores/metabolismo
6.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100385

RESUMO

Neurodegeneration mediates neurological disability in inflammatory demyelinating diseases of the CNS. The role of innate immune cells in mediating this damage has remained controversial with evidence for destructive and protective effects. This has complicated efforts to develop treatment. The time sequence and dynamic evolution of the opposing functions are especially unclear. Given limits of in vivo monitoring in human diseases such as multiple sclerosis (MS), animal models are warranted to investigate the association and timing of innate immune activation with neurodegeneration. Using noninvasive in vivo retinal imaging of experimental autoimmune encephalitis (EAE) in CX3CR1GFP/+-knock-in mice followed by transcriptional profiling, we are able to show 2 distinct waves separated by a marked reduction in the number of innate immune cells and change in cell morphology. The first wave is characterized by an inflammatory phagocytic phenotype preceding the onset of EAE, whereas the second wave is characterized by a regulatory, antiinflammatory phenotype during the chronic stage. Additionally, the magnitude of the first wave is associated with neuronal loss. Two transcripts identified - growth arrest-specific protein 6 (GAS6) and suppressor of cytokine signaling 3 (SOCS3) - might be promising targets for enhancing protective effects of microglia in the chronic phase after initial injury.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Imunidade Inata/imunologia , Microglia/imunologia , Retina/imunologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Adjuvante de Freund , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Microglia/metabolismo , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos , Fagocitose/genética , Fagocitose/imunologia , Retina/citologia , Retina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
7.
Neurology ; 97(2): 68-79, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33910937

RESUMO

OBJECTIVE: To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS: To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS: A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS: The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly.


Assuntos
Projetos de Pesquisa , Doenças Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica , Consenso , Técnica Delphi , Humanos , Oftalmologia/métodos
8.
Brain ; 143(4): 1127-1142, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293668

RESUMO

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Assuntos
4-Aminopiridina/farmacologia , Esclerose Múltipla/patologia , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/patologia , Degeneração Retiniana/patologia , Adulto , Idoso , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células-Tronco Neurais/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar
9.
J Neuroinflammation ; 16(1): 203, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684959

RESUMO

BACKGROUND: Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS: Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS: Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS: Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Degeneração Neural/patologia , Neurônios/patologia , Retina/patologia , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL
10.
J Vis Exp ; (143)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30688311

RESUMO

Optical coherence tomography (OCT) is a fast, non-invasive, interferometric technique allowing high-resolution retinal imaging. It is an ideal tool for the investigation of processes of neurodegeneration, neuroprotection and neuro-repair involving the visual system, as these often correlate well with retinal changes. As a functional readout, visually evoked compensatory eye and head movements are commonly used in experimental models involving the visual function. Combining both techniques allows a quantitative in vivo investigation of structure and function, which can be used to investigate the pathological conditions or to evaluate the potential of novel therapeutics. A great benefit of the presented techniques is the possibility to perform longitudinal analyses allowing the investigation of dynamic processes, reducing variability and cuts down the number of animals needed for the experiments. The protocol described aims to provide a manual for acquisition and analysis of high quality retinal scans of mice and rats using a low cost customized holder with an option to deliver inhalational anesthesia. Additionally, the proposed guide is intended as an instructional manual for researchers using optokinetic response (OKR) analysis in rodents, which can be adapted to their specific needs and interests.


Assuntos
Óptica e Fotônica , Tomografia de Coerência Óptica/métodos , Animais , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/metabolismo , Ratos
11.
Elife ; 72018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204081

RESUMO

Glial support is critical for normal axon function and can become dysregulated in white matter (WM) disease. In humans, loss-of-function mutations of KCNJ10, which encodes the inward-rectifying potassium channel KIR4.1, causes seizures and progressive neurological decline. We investigated Kir4.1 functions in oligodendrocytes (OLs) during development, adulthood and after WM injury. We observed that Kir4.1 channels localized to perinodal areas and the inner myelin tongue, suggesting roles in juxta-axonal K+ removal. Conditional knockout (cKO) of OL-Kcnj10 resulted in late onset mitochondrial damage and axonal degeneration. This was accompanied by neuronal loss and neuro-axonal dysfunction in adult OL-Kcnj10 cKO mice as shown by delayed visual evoked potentials, inner retinal thinning and progressive motor deficits. Axon pathologies in OL-Kcnj10 cKO were exacerbated after WM injury in the spinal cord. Our findings point towards a critical role of OL-Kir4.1 for long-term maintenance of axonal function and integrity during adulthood and after WM injury.


Assuntos
Axônios/metabolismo , Leucoencefalopatias/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/genética , Animais , Axônios/patologia , Humanos , Leucoencefalopatias/fisiopatologia , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Convulsões/fisiopatologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
12.
J Vis Exp ; (126)2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28872108

RESUMO

While it is recognized that aquaporin-4 (AQP4)-specific T cells and antibodies participate in the pathogenesis of neuromyelitis optica (NMO), a human central nervous system (CNS) autoimmune demyelinating disease, creation of an AQP4-targeted model with both clinical and histologic manifestations of CNS autoimmunity has proven challenging. Immunization of wild-type (WT) mice with AQP4 peptides elicited T cell proliferation, although those T cells could not transfer disease to naïve recipient mice. Recently, two novel AQP4 T cell epitopes, peptide (p) 135-153 and p201-220, were identified when studying immune responses to AQP4 in AQP4-deficient (AQP4-/-) mice, suggesting T cell reactivity to these epitopes is normally controlled by thymic negative selection. AQP4-/- Th17 polarized T cells primed to either p135-153 or p201-220 induced paralysis in recipient WT mice, that was associated with predominantly leptomeningeal inflammation of the spinal cord and optic nerves. Inflammation surrounding optic nerves and involvement of the inner retinal layers (IRL) were manifested by changes in serial optical coherence tomography (OCT). Here, we illustrate the approaches used to create this new in vivo model of AQP4-targeted CNS autoimmunity (ATCA), which can now be employed to study mechanisms that permit development of pathogenic AQP4-specific T cells and how they may cooperate with B cells in NMO pathogenesis.


Assuntos
Aquaporina 4/metabolismo , Autoantígenos/metabolismo , Neuromielite Óptica/complicações , Nervo Óptico/patologia , Linfócitos T/metabolismo , Animais , Humanos , Camundongos , Paralisia
13.
J Nat Sci ; 3(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28748216

RESUMO

Aquaporin-4 (AQP4)-specific antibodies are instrumental in promoting central nervous system (CNS) tissue injury in neuromyelitis optica (NMO), yet evidence indicates that AQP4-specific T cells also have a pivotal role in NMO pathogenesis. Although considerable effort has been devoted to creation of animal models to study how AQP4-specific T cells and antibodies may cooperate in development of both clinical and histologic opticospinal inflammatory disease, the initial attempts were unsuccessful. Recently, it was discovered that T cells from AQP4-deficient (AQP4-/-) mice recognize distinct AQP4 epitopes that were not identified previously in wild-type (WT) mice, and that donor Th17 cells from AQP4-/- mice that target those novel epitopes could cause paralysis and visual system injury associated with opticospinal inflammation in WT recipient mice. These observations indicate that the pathogenic AQP4-specific T cell repertoire is normally controlled by negative selection. Here, we describe the advances leading to development of an animal model for aquaporin-targeted CNS autoimmunity (ATCA). This new model provides a foundation to investigate immune mechanisms that may participate in NMO pathogenesis. It should also permit preclinical testing of agents considered for treatment of NMO.

14.
Sci Transl Med ; 9(385)2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404863

RESUMO

Heterozygous mutations in the GRN gene lead to progranulin (PGRN) haploinsufficiency and cause frontotemporal dementia (FTD), a neurodegenerative syndrome of older adults. Homozygous GRN mutations, on the other hand, lead to complete PGRN loss and cause neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disease usually seen in children. Given that the predominant clinical and pathological features of FTD and NCL are distinct, it is controversial whether the disease mechanisms associated with complete and partial PGRN loss are similar or distinct. We show that PGRN haploinsufficiency leads to NCL-like features in humans, some occurring before dementia onset. Noninvasive retinal imaging revealed preclinical retinal lipofuscinosis in heterozygous GRN mutation carriers. Increased lipofuscinosis and intracellular NCL-like storage material also occurred in postmortem cortex of heterozygous GRN mutation carriers. Lymphoblasts from heterozygous GRN mutation carriers accumulated prominent NCL-like storage material, which could be rescued by normalizing PGRN expression. Fibroblasts from heterozygous GRN mutation carriers showed impaired lysosomal protease activity. Our findings indicate that progranulin haploinsufficiency caused accumulation of NCL-like storage material and early retinal abnormalities in humans and implicate lysosomal dysfunction as a central disease process in GRN-associated FTD and GRN-associated NCL.


Assuntos
Haploinsuficiência/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Animais , Células Cultivadas , Lobo Frontal/metabolismo , Lobo Frontal/ultraestrutura , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Haploinsuficiência/genética , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos , Camundongos , Microscopia Eletrônica , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Progranulinas , Retina/metabolismo , Retina/ultraestrutura
15.
BMJ Open Ophthalmol ; 1(1): e000008, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354694

RESUMO

BACKGROUND: In vivo retinal imaging of rodents has gained a growing interest in ophthalmology and neurology. The bedding of the animals with the possibility to perform adjustments in order to obtain an ideal camera-to-eye angle is challenging. METHODS: We provide a guide for a cost-effective, do-it-yourself rodent holder for ocular imaging techniques. The set-up was tested and refined in over 2000 optical coherence tomography measurements of mice and rats. RESULTS: The recommended material is very affordable, readily available and easily assembled. The holder can be adapted to both mice and rats. A custom-made mouthpiece is provided for the use of inhalant anaesthesia. The holder is highly functional and assures that the rodent's eye is the centre of rotation for adjustments in both the axial and the transverse planes with a major time benefit over unrestrained positioning of the rodents. CONCLUSION: We believe this guide is very useful for eye researchers focusing on in vivo retinal imaging in rodents as it significantly reduces examination times for ocular imaging.

16.
Proc Natl Acad Sci U S A ; 113(51): 14781-14786, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27940915

RESUMO

Aquaporin-4 (AQP4)-specific T cells are expanded in neuromyelitis optica (NMO) patients and exhibit Th17 polarization. However, their pathogenic role in CNS autoimmune inflammatory disease is unclear. Although multiple AQP4 T-cell epitopes have been identified in WT C57BL/6 mice, we observed that neither immunization with those determinants nor transfer of donor T cells targeting them caused CNS autoimmune disease in recipient mice. In contrast, robust proliferation was observed following immunization of AQP4-deficient (AQP4-/-) mice with AQP4 peptide (p) 135-153 or p201-220, peptides predicted to contain I-Ab-restricted T-cell epitopes but not identified in WT mice. In comparison with WT mice, AQP4-/- mice used unique T-cell receptor repertoires for recognition of these two AQP4 epitopes. Donor T cells specific for either determinant from AQP4-/-, but not WT, mice induced paralysis in recipient WT and B-cell-deficient mice. AQP4-specific Th17-polarized cells induced more severe disease than Th1-polarized cells. Clinical signs were associated with opticospinal infiltrates of T cells and monocytes. Fluorescent-labeled donor T cells were detected in CNS lesions. Visual system involvement was evident by changes in optical coherence tomography. Fine mapping of AQP4 p201-220 and p135-153 epitopes identified peptides within p201-220 but not p135-153, which induced clinical disease in 40% of WT mice by direct immunization. Our results provide a foundation to evaluate how AQP4-specific T cells contribute to AQP4-targeted CNS autoimmunity (ATCA) and suggest that pathogenic AQP4-specific T-cell responses are normally restrained by central tolerance, which may be relevant to understanding development of AQP4-reactive T cells in NMO.


Assuntos
Aquaporina 4/genética , Aquaporina 4/metabolismo , Autoantígenos/química , Epitopos de Linfócito T/imunologia , Neuromielite Óptica/metabolismo , Linfócitos T/citologia , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/metabolismo , Proliferação de Células , Sistema Nervoso Central , Mapeamento de Epitopos , Feminino , Citometria de Fluxo , Tolerância Imunológica , Imunoglobulina G/imunologia , Inflamação , Leucócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/citologia , Células Th17/citologia
18.
Neurology ; 86(24): 2303-9, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27225223

RESUMO

OBJECTIVE: To develop consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results. METHODS: A panel of experienced OCT researchers (including 11 neurologists, 2 ophthalmologists, and 2 neuroscientists) discussed requirements for performing and reporting quantitative analyses of retinal morphology and developed a list of initial recommendations based on experience and previous studies. The list of recommendations was subsequently revised during several meetings of the coordinating group. RESULTS: We provide a 9-point checklist encompassing aspects deemed relevant when reporting quantitative OCT studies. The areas covered are study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition data analysis, recommended nomenclature, and statistical analysis. CONCLUSIONS: The Advised Protocol for OCT Study Terminology and Elements recommendations include core items to standardize and improve quality of reporting in quantitative OCT studies. The recommendations will make reporting of quantitative OCT studies more consistent and in line with existing standards for reporting research in other biomedical areas. The recommendations originated from expert consensus and thus represent Class IV evidence. They will need to be regularly adjusted according to new insights and practices.


Assuntos
Lista de Checagem , Projetos de Pesquisa/normas , Tomografia de Coerência Óptica/métodos , Humanos , Terminologia como Assunto
19.
J Neurol ; 263(7): 1323-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27142714

RESUMO

The objective of the study was to investigate the timing of central nervous system tissue atrophy in MS by evaluating longitudinal retinal volume changes in a broadly representative cohort with disease duration across the entire arc of disease. In this longitudinal study, 135 patients with MS and 16 healthy reference subjects underwent spectral-domain optical coherence tomography (OCT) at baseline and 2 years later. Following OCT quality control, automated segmentation of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell-inner plexiform layer (mGCIPL) and macular inner nuclear layer (mINL) was performed. Generalized estimation equations were used to analyze longitudinal changes and associations with disease duration and clinical measures. Participants had a median disease duration at baseline of 16.4 years (range 0.1-45.4). Nearly half (44 %) of the MS patients had previously experienced MS-related optic neuritis (MSON) more than 6 months prior. The MS patients demonstrated a significant decrease over 2 years of the pRNFL (-1.1 µm, 95 % CI 1.4-0.7, p < 0.001) and mGCIPL (-1.1 µm, 95 % CI -1.4 to -0.8, p < 0.001). This thinning was most pronounced early in the course of disease. These findings were irrespective of previous episodes of MSON. No consistent pattern of change was observed for the mINL (-0.03 µm, 95 % CI -0.2 to 0.2, p = 0.795). This longitudinal study demonstrated that injury of the innermost retinal layers is found in MS and that this damage occurs most rapidly during the early stages of disease. The attenuation of atrophy with longer disease duration is suggestive of a plateau effect. These findings emphasize the importance of early intervention to prevent such injury.


Assuntos
Axônios/patologia , Esclerose Múltipla/complicações , Retina/diagnóstico por imagem , Retina/patologia , Neurônios Retinianos/patologia , Tomografia de Coerência Óptica , Adulto , Atrofia/diagnóstico por imagem , Atrofia/etiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Vias Visuais/diagnóstico por imagem
20.
J Diabetes ; 7(5): 657-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25266170

RESUMO

BACKGROUND: Patients with diabetes mellitus (DM) are more likely to develop in-hospital complications (IHCs) than patients without DM. In addition, they have poorer outcomes after an ischemic stroke (IS). Our goal was to evaluate whether the increase in risk for the development of IHCs in patients with IS is due to DM per se, to poor metabolic control of the DM or to glucose levels on admission. METHODS: An observational study that included 1137 consecutive IS patients admitted to a stroke unit. Demographic data, vascular risk factors, stroke severity, on-admission glycemia and IHC were compared between patients with and without DM. Multivariate logistic regression analyses were performed to identify factors associated with IHCs. RESULTS: Of all included patients, 283 (24.8%) had a previous diagnosis of DM. These patients were older and had higher comorbidity, with no differences in stroke severity. They presented on-admission glycemia ≥155 mg/dL more often and suffered IHCs more frequently (24% versus 17.7%, P = 0.034). However, after adjusting for baseline differences, DM was not associated with the development of any IHC, whereas on-admission glycemia ≥155 mg/dL (odds ratio: 1.959; 95% CI 1.276-3.009; P = 0.002) and stroke severity (odds ratio: 1.141; 95% CI 1.109-1.173; P < 0.001) were the primary predictors of the development of IHCs. CONCLUSIONS: Although IS patients with DM more often suffered IHCs, previous diagnosis of DM is not per se associated with the risk of IHCs. Stroke severity and on-admission glycemia ≥155 mg/dL were the most significant predictors for the development of IHCs.


Assuntos
Glicemia/metabolismo , Isquemia Encefálica/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Acidente Vascular Cerebral/complicações , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/sangue , Isquemia Encefálica/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Fatores de Risco , Índice de Gravidade de Doença , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA