Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 146: 70-79, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604249

RESUMO

Viruses rely on host cells for energy and synthesis machinery required for genome replication and particle assembly. Due to the dependence of viruses on host cells, viruses have evolved multiple mechanisms by which they can induce metabolic changes in the host cell to suit their specific requirements. The host immune response also involves metabolic changes to be able to react to viral insult. Polyamines are small ubiquitously expressed polycations, and their metabolism is critical for viral replication and an adequate host immune response. This is due to the variety of functions that polyamines have, ranging from condensing DNA to enhancing the translation of polyproline-containing proteins through the hypusination of eIF5A. Here, we review the diverse mechanisms by which viruses exploit polyamines, as well as the mechanisms by which immune cells utilize polyamines for their functions. Furthermore, we highlight potential avenues for further study of the host-virus interface.


Assuntos
Interações entre Hospedeiro e Microrganismos , Poliaminas , Viroses , Replicação Viral , Vírus , Humanos , Imunidade Adaptativa , Antineoplásicos/farmacologia , Antivirais/farmacologia , Eflornitina/farmacologia , Interações entre Hospedeiro e Microrganismos/imunologia , Poliaminas/antagonistas & inibidores , Poliaminas/metabolismo , Viroses/metabolismo , Viroses/virologia , Vírus/metabolismo , Processamento de Proteína Pós-Traducional , Lisina , Fator de Iniciação de Tradução Eucariótico 5A
2.
ACS Infect Dis ; 8(8): 1439-1448, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35786847

RESUMO

Viruses rely on an array of cellular metabolites to replicate and form progeny virions. One set of these molecules, polyamines, are small aliphatic molecules, which are abundant in most cells, that support virus infection; however, the precise roles of polyamines in virus infection remain incompletely understood. Recent work demonstrated that polyamine metabolism supports cellular cholesterol synthesis through translation of the key transcription factor SREBP2. Here, we show that the bunyavirus Rift Valley fever virus (RVFV) relies on both cholesterol and polyamines for virus infection. Depletion of cellular cholesterol or interruption of cholesterol trafficking negatively impacts RVFV infection. Cholesterol is incorporated into RVFV virions and mediates their infectivity in a polyamine-dependent manner; we find that the virus derived from polyamine-depleted cells lacks cholesterol within the virion membrane. Conversely, we find that virion-associated cholesterol is linked to the incorporation of spermidine within the virion. Our prior work demonstrated that polyamines facilitate pH-mediated fusion and genome release, which may be a consequence of cholesterol depletion within virions. Thus, our work highlights the metabolic connection between polyamines and cholesterol synthesis to impact bunyavirus infection. These data demonstrate the connectedness between cellular metabolic pathways and reveal potential avenues of therapeutic intervention.


Assuntos
Vírus da Febre do Vale do Rift , Animais , Colesterol , Poliaminas , Vírus da Febre do Vale do Rift/genética , Vírion/genética
3.
Antimicrob Agents Chemother ; 66(6): e0029222, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35652314

RESUMO

Identifying novel antivirals requires significant time and resource investment, and the continuous threat of viruses to human health necessitates commitment to antiviral identification and development. Developing antivirals requires years of research and validation, and recent outbreaks have highlighted the need for preparedness in counteracting pandemics. One way to facilitate development is to repurpose molecules already used clinically. By screening such compounds, we can accelerate antiviral development. Here, we screened compounds from the National Institutes of Health's Developmental Therapeutic Program for activity against chikungunya virus, an alphavirus that is responsible for a significant outbreak in the Americas in 2013. Using this library, we identified several compounds with known antiviral activity, as well as several novel antivirals. Given its favorable in vitro activity and well-described in vivo activity, as well as its broad availability, we focused on bisacodyl, a laxative used for the treatment of constipation, for follow-up studies. We find that bisacodyl inhibits chikungunya virus infection in a variety of cell types, over a range of concentrations, and over several rounds of replication. We find that bisacodyl does not disrupt chikungunya virus particles or interfere with their ability to attach to cells, but, instead, bisacodyl inhibits virus replication. Finally, we find that bisacodyl is broadly antiviral against a variety of RNA viruses, including enteroviruses, flaviviruses, bunyaviruses, and alphaviruses; however, it exhibited no activity against the DNA virus vaccinia virus. Together, these data highlight the power of compound screening to identify novel antivirals and suggest that bisacodyl may hold promise as a broad-spectrum antiviral.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Antivirais/farmacologia , Antivirais/uso terapêutico , Bisacodil/farmacologia , Bisacodil/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Humanos , Replicação Viral
4.
Viruses ; 14(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215962

RESUMO

Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities. In response to a second antigen dose, both COVID-19-naïve and experienced subjects exhibited elevated levels of anti-spike and SARS-CoV-2 neutralizing activity; however, COVID-19-experienced individuals achieved higher antibody levels and neutralization activity as a group. The COVID-19-experienced subjects exhibited no significant increase in antibody or neutralization titer in response to the second vaccine dose (i.e., third antigen exposure). Finally, we found that COVID-19-naïve individuals who received the Moderna vaccine exhibited a more robust boost response to the second vaccine dose (p = 0.004) as compared to the response to Pfizer-BioNTech. Ongoing studies with this cohort will continue to contribute to our understanding of the range and durability of responses to SARS-CoV-2 mRNA vaccines.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/sangue , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Adulto , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Vacina BNT162/administração & dosagem , COVID-19/imunologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade
5.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188729

RESUMO

Coronaviruses (CoVs) encode multiple interferon (IFN) antagonists that modulate the host response to virus replication. Here, we evaluated the host transcriptional response to infection with murine coronaviruses encoding independent mutations in one of two different viral antagonists, the deubiquitinase (DUB) within nonstructural protein 3 or the endoribonuclease (EndoU) within nonstructural protein 15. We used transcriptomics approaches to compare the scope and kinetics of the host response to the wild-type (WT), DUBmut, and EndoUmut viruses in infected macrophages. We found that the EndoUmut virus activates a focused response that predominantly involves type I interferons and interferon-related genes, whereas the WT and DUBmut viruses more broadly stimulate upregulation of over 2,800 genes, including networks associated with activating the unfolded protein response (UPR) and the proinflammatory response associated with viral pathogenesis. This study highlights the role of viral interferon antagonists in shaping the kinetics and magnitude of the host response during virus infection and demonstrates that inactivating a dominant viral antagonist, the coronavirus endoribonuclease, dramatically alters the host response in macrophages.IMPORTANCE Macrophages are an important cell type during coronavirus infections because they "notice" the infection and respond by inducing type I interferons, which limits virus replication. In turn, coronaviruses encode proteins that mitigate the cell's ability to signal an interferon response. Here, we evaluated the host macrophage response to two independent mutant coronaviruses, one with reduced deubiquitinating activity (DUBmut) and the other containing an inactivated endoribonuclease (EndoUmut). We observed a rapid, robust, and focused response to the EndoUmut virus, which was characterized by enhanced expression of interferon and interferon-related genes. In contrast, wild-type virus and the DUBmut virus elicited a more limited interferon response and ultimately activated over 2,800 genes, including players in the unfolded protein response and proinflammatory pathways associated with progression of significant disease. This study reveals that EndoU activity substantially contributes to the ability of coronaviruses to evade the host innate response and to replicate in macrophages.


Assuntos
Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Endorribonucleases/metabolismo , Interferons/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Biologia Computacional , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Citocinas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Mutação , RNA Viral , Resposta a Proteínas não Dobradas
6.
J Infect Dis ; 222(1): 158-168, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32052021

RESUMO

BACKGROUND: Kawasaki disease (KD) is the leading cause of childhood acquired heart disease in developed nations and can result in coronary artery aneurysms and death. Clinical and epidemiologic features implicate an infectious cause but specific antigenic targets of the disease are unknown. Peripheral blood plasmablasts are normally highly clonally diverse but the antibodies they encode are approximately 70% antigen-specific 1-2 weeks after infection. METHODS: We isolated single peripheral blood plasmablasts from children with KD 1-3 weeks after onset and prepared 60 monoclonal antibodies (mAbs). We used the mAbs to identify their target antigens and assessed serologic response among KD patients and controls to specific antigen. RESULTS: Thirty-two mAbs from 9 of 11 patients recognize antigen within intracytoplasmic inclusion bodies in ciliated bronchial epithelial cells of fatal cases. Five of these mAbs, from 3 patients with coronary aneurysms, recognize a specific peptide, which blocks binding to inclusion bodies. Sera from 5/8 KD patients day ≥ 8 after illness onset, compared with 0/17 infant controls (P < .01), recognized the KD peptide antigen. CONCLUSIONS: These results identify a protein epitope targeted by the antibody response to KD and provide a means to elucidate the pathogenesis of this important worldwide pediatric problem.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Formação de Anticorpos/genética , Células Sanguíneas/imunologia , Epitopos/imunologia , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/imunologia , Feminino , Humanos , Lactente , Masculino , Síndrome de Linfonodos Mucocutâneos/epidemiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA