Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Cell ; 36(6): 2129-2139, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460706

RESUMO

Groups (Grp) 3 and 4 are aggressive molecular subgroups of medulloblastoma (MB), with high rates of leptomeningeal dissemination. To date, there is still a paucity of biomarkers for these subtypes of MBs. In this study, we investigated the clinical significance and biological functions of Musashi-1 (MSI1) in Grp3 and Grp4-MBs. First, we assessed the expression profile of MSI1 in 59 primary MB samples (15-WNT, 18-SHH, 9-Grp3, and 17-Grp4 subgroups) by qRT-PCR. MSI1 mRNA expression levels were also validated in an additional public dataset of MBs (GSE85217). The ROC curve was used to validate the diagnostic standards of MSI1 expression. Next, the potential correlated cell-cycle genes were measured by RNA-Seq. Cell cycle, cell viability, and apoptosis were evaluated in a Grp3/Grp4 MB cell line after knockdown of MSI1 and cisplatin treatment. We identified an overexpression of MSI1 with a high accuracy to discriminate Grp3/Grp4-MBs from non-Grp3/Grp4-MBs. We identified that MSI1 knockdown not only triggered transcriptional changes in the cell-cycle pathway, but also affected G2/M phase in vitro, supporting the role of knockdown of MSI1 in cell-cycle arrest. Finally, MSI1 knockdown decreased cell viability and sensitized D283-Med cells to cisplatin treatment by enhancing cell apoptosis. Based on these findings, we suggest that MSI1 modulates cell-cycle progression and may play a role as biomarker for Grp3/Grp4-MBs. In addition, MSI1 knockdown combined with cisplatin may offer a potential strategy to be further explored in Grp3/Grp4-MBs.

2.
Cell Mol Neurobiol ; 43(2): 813-826, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35366170

RESUMO

Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Prognóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
3.
Med Oncol ; 39(12): 216, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175721

RESUMO

Patients diagnosed with acute lymphoblastic leukemia (ALL) bearing t(4;11)/MLL-AF4 have aggressive clinical features, poor prognosis and there is an urgent need for new therapies to improve outcomes. Panobinostat (LBH589) has been identified as a potential therapeutic agent for ALL with t(4;11) and studies suggest that the antineoplastic effects are associated with reduced MLL-AF4 fusion protein and reduced expression of HOX genes. Here, we evaluated the in vitro effects of the combination of LBH589 with methotrexate (MTX) or 6-mercaptopurine (6MP) by cell proliferation assays and Calcusyn software in ALL cell line (RS4;11); the in vivo effects of LBH589 in xenotransplanted NOD-scid IL2Rgammanull mice measuring human lymphoblasts by flow cytometry; and the expression of HOX genes by qPCR after treatment in an adult model of ALL with t(4;11). LBH589 combination with MTX or 6MP did not promote synergistic effects in RS4;11 cell line. LBH589 treatment leads to increased overall survival and reduction of blasts in xenotransplanted mice but caused no significant changes in HOXA7, HOXA9, HOXA10, and MEIS1 expression. The LBH589, alone, showed promising antineoplastic effects in vivo and may represent a potential agent for chemotherapy in ALL patients with t(4;11).


Assuntos
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Animais , Humanos , Mercaptopurina/farmacologia , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Panobinostat/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
4.
J Mol Neurosci ; 72(3): 633-641, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822110

RESUMO

The Group 3 Medulloblastoma (Grp3-MB) is an aggressive molecular subtype with a high incidence of metastasis and deaths. In this study, were used an RNA sequencing data (RNA-Seq) from a Brazilian cohort of MBs to identify hub genes associated with the metastatic risk. Data validation were performed by using multiple large datasets from MBs (GSE85217, GSE37418, and EGAS00001001953). DESeq2 package in R software was used to identify the differentially expressed genes (DEGs) in our RNA-Seq data. The DEGs data were accessed to construct the modules/graphs of co-expression and to identify hub genes through Cytoscape platform. The coregulated genes were enriched by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the protein-protein interaction (PPI) network was visualized by Cytoscape. The Kaplan-Meier plotter and ROC curves were used to validate the diagnostic and prognostic values of specific biomarkers identified through this model. We identified that inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) as a downregulated hub gene, with a high diagnostic accuracy to Grp3-MBs and associated with tumor metastasis. In addition, we identified genes significantly correlated with ITPR1 that were associated with metastasis in Grp3-MB (ATP1A2, MTTL7A, and RGL1) and worst overall survival in MBs (ANTXR1 and RGL1). Our findings suggest that the ITPR1 hub gene is potentially involved in the metastatic process for Grp3-MB. Our data also provide evidence of targets that may serve as prognostic predictors and/or regulators for the metastatic process that maybe explored for further research of individualized therapy to Grp3-MBs.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Inositol , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Meduloblastoma/genética , Proteínas dos Microfilamentos/metabolismo , Prognóstico , Receptores de Superfície Celular/genética
5.
Mol Biol Rep ; 47(8): 6439-6443, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32671623

RESUMO

TP53 p.R337H germline mutation is highly prevalent in the Southern region of Brazil. We sought to investigate TP53 p.R337H mutation in pediatric tumor samples from a population settled in a geographic area of high prevalence for this variant. Mutation assessment and genetic counseling for carriers/relatives were provided. 6/57 tumor samples were heterozygous for TP53 p.R337H. As expected, a high frequency was observed within adrenocortical tumors (3/3) and choroid plexus carcinomas (2/2). Interestingly, the TP53 R337H mutation was found in one case of pediatric rhabdomyosarcoma with Li-Fraumeni pedigree. Our finding expands the spectrum of childhood cancer associated with this germline mutation.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Córtex Suprarrenal/epidemiologia , Neoplasias do Córtex Suprarrenal/genética , Brasil/epidemiologia , Carcinoma/epidemiologia , Carcinoma/genética , Pré-Escolar , Neoplasias do Plexo Corióideo/epidemiologia , Neoplasias do Plexo Corióideo/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Taxa de Mutação , Neoplasias/epidemiologia , Mutação Puntual , Rabdomiossarcoma/epidemiologia , Rabdomiossarcoma/genética
6.
Sci Rep ; 10(1): 6836, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321992

RESUMO

We evaluated the potential effects of ATO in different pediatric SHH-MB cell lines (ONS-76: TP53-wild type; DAOY and UW402: TP53-mutated). MB cell lines molecular subgroup was confirmed and TP53 mutations were validated. Cell viability, clonogenicity and apoptosis were evaluated after ATO treatment at different concentrations (1-16 µM) alone or combined with irradiation doses (0.5, 1, 2 and 4 Gy). Rad51 and Ku86 proteins were evaluated by WB. ATO treatment reduced cell viability for all SHH-MB cell lines. Significant decrease of clonogenic capacity and higher apoptosis rates were also observed after ATO exposure, being cell death more pronounced (>70%) for the SHH-MB TP53-mutated. Combined treatment of ATO with irradiation also reduced colonies formation in UW402 tumor cells, which was independent of DNA damage repair proteins Rad51 and Ku86. In silico analyses suggested that a set of genes from cell cycle and p53 pathways are differentially expressed in SHH tumor subtypes, suggesting that cell lines may respond to therapies according to the gene expression profiles. Herein, we showed ATO cytotoxicity in pediatric SHH cell lines, with marked radiosensitizing effect for the MB-SHH TP53-mutated cells. These results highlight the potential of ATO, alone or in combination with radiotherapy, supporting further clinical investigations.


Assuntos
Apoptose/efeitos dos fármacos , Trióxido de Arsênio/farmacologia , Meduloblastoma/tratamento farmacológico , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Criança , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteínas de Neoplasias/metabolismo
7.
Cancer Gene Ther ; 27(6): 509-512, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31308481

RESUMO

RELA-fused supratentorial (ST) ependymoma (EPN) is an aggressive subgroup with poor prognosis. Considering the putative role of Notch signaling in the maintenance of the cancer stem cells (CSC) phenotype in RELA-fused EPN, we investigated the expression of Notch pathway and its target genes in this subgroup. We also evaluated the effects of two Notch inhibitors (DAPT and RO4929097) on cell proliferation, apoptosis, colony formation, and CSCs markers gene expression on EPN cell line of the RELA-fused subgroup (BXD-1425). In addition, in silico signatures of the Notch genes and CSCs markers were analyzed on a large clinical dataset from GSE64415 study. We found that among the ST-EPN subgroups the Notch signaling (NOTCH1, JAG1, JAG2, and HES4) is specifically activated in the ST-EPN-RELA. Furthermore, treatment of the RELA-fused EPN cell line with the Notch inhibitors impaired the Notch signaling expression and revealed that Notch axis is not essential for cell proliferation and survival in this setting. NOTCH1 expression in ST-EPN was correlated with the CSCs markers VEGFA and L1CAM overexpression and JAG1 expression was correlated with the CCND1 and CDK6 overexpression. In addition, in vitro treatment with Notch inhibitors induced downregulation of CSCs markers. These findings indicate that Notch signaling can be involved in the ST-EPN-RELA CSCs maintenance by modulating the expression of genes responsible for cell phenotype and cell fate.


Assuntos
Ependimoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Neoplasias Supratentoriais/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ependimoma/patologia , Humanos , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Neoplasias Supratentoriais/patologia , Regulação para Cima
8.
Cancer Gene Ther ; 27(5): 378-382, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31073205

RESUMO

Medulloblastoma (MB) is the most frequent malignant brain tumor in children and it is subgrouped into 4 entities (SHH, WNT, Group 3, and Group 4). Molecular pathways involved in these different subgroups still are evolving and can be of clinical relevance to therapy. The YAP1-CTGF axis is known to regulate cell proliferation, differentiation, and cell death; however, its role in MB is poorly explored. We aimed to investigate the role of YAP1 gene in the MB SHH cell line DAOY and evaluate cell proliferation, doubling time and 3D spheroids invasion and its consequence on CTGF regulation. We assessed CTGF expression from 22 children with MB. Lastly, we validated our findings through in silico analysis in large cohorts dataset of patients. We observed an increased invasion rate of DAOY cells and CTGF downregulation under YAP1 knockdown (p < 0.0001). Additionally CTGF is overexpressed in MB with extensive nodularity subtype and an indicative of higher survival rates in pediatric MB (p < 0.05). Interestingly, no difference of CTGF expression was observed between molecular subgroups. These results provide new evidence ofCTGF as a potential prognostic marker for MB, corroborating to the role of YAP1 in restricting MB cell.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Meduloblastoma/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Pré-Escolar , Simulação por Computador , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Meduloblastoma/terapia , Prognóstico , Transdução de Sinais/genética , Taxa de Sobrevida , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
9.
Acta Neuropathol Commun ; 7(1): 33, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832734

RESUMO

Next-generation sequencing platforms are routinely used for molecular assignment due to their high impact for risk stratification and prognosis in medulloblastomas. Yet, low and middle-income countries still lack an accurate cost-effective platform to perform this allocation. TaqMan Low Density array (TLDA) assay was performed using a set of 20 genes in 92 medulloblastoma samples. The same methodology was assessed in silico using microarray data for 763 medulloblastoma samples from the GSE85217 study, which performed MB classification by a robust integrative method (Transcriptional, Methylation and cytogenetic profile). Furthermore, we validated in 11 MBs samples our proposed method by Methylation Array 450 K to assess methylation profile along with 390 MB samples (GSE109381) and copy number variations. TLDA with only 20 genes accurately assigned MB samples into WNT, SHH, Group 3 and Group 4 using Pearson distance with the average-linkage algorithm and showed concordance with molecular assignment provided by Methylation Array 450 k. Similarly, we tested this simplified set of gene signatures in 763 MB samples and we were able to recapitulate molecular assignment with an accuracy of 99.1% (SHH), 94.29% (WNT), 92.36% (Group 3) and 95.40% (Group 4), against 97.31, 97.14, 88.89 and 97.24% (respectively) with the Ward.D2 algorithm. t-SNE analysis revealed a high level of concordance (k = 4) with minor overlapping features between Group 3 and Group 4. Finally, we condensed the number of genes to 6 without significantly losing accuracy in classifying samples into SHH, WNT and non-SHH/non-WNT subgroups. Additionally, we found a relatively high frequency of WNT subgroup in our cohort, which requires further epidemiological studies. TLDA is a rapid, simple and cost-effective assay for classifying MB in low/middle income countries. A simplified method using six genes and restricting the final stratification into SHH, WNT and non-SHH/non-WNT appears to be a very interesting approach for rapid clinical decision-making.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Meduloblastoma/genética , Meduloblastoma/patologia , Análise Serial de Proteínas/métodos , Adolescente , Criança , Pré-Escolar , Metilação de DNA/fisiologia , Feminino , Seguimentos , Humanos , Lactente , Masculino , Adulto Jovem
10.
J Neurooncol ; 139(1): 51-60, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29671197

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common malignant primary brain tumor affecting adults. In pediatric patients, GBM exhibits genetic variations distinct from those identified in the adult GBM phenotype. This tumor exhibits complex genetic changes leading to malignant progression and resistance to standard therapies including radiotherapy and temozolomide treatment. The GDF15 gene codes for a growth factor whose expression is altered in the presence of inflammations and malignancies. GDF15 is associated with a poor prognosis and with radio- and chemoresistance in a variety of tumors. The aim of this study was to compare the response to GDF15 knockdown in adult (U343) and pediatric (KNS42) GBM cell line models. METHODS: The expression of the GDF15 gene was investigated by qRT-PCR and overexpression was identified in both GBM cell lines. The KNS42 and U343 cell lines were submitted to lentiviral transduction with shRNA of GDF15 and validated at the protein level. To understand the difference between cell lines, RNAseq was performed after GDF15 knockdown. RESULTS: The data obtained demonstrated that the pathways were differentially expressed in adult GBM and pediatric GBM cell lines. This was confirmed by functional assays perfomed after independent treatments (radiotherapy and TMZ). CONCLUSION: These results demonstrated that GBM cell lines had distinct responses to GDF15 knockdown, a fact that can be explained by the different molecular profile of pediatric and adult GBM.


Assuntos
Glioblastoma/metabolismo , Fator 15 de Diferenciação de Crescimento/deficiência , Adulto , Antineoplásicos Alquilantes/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Criança , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Glioblastoma/terapia , Fator 15 de Diferenciação de Crescimento/genética , Humanos , RNA Interferente Pequeno , Radioterapia , Temozolomida/farmacologia
11.
J Neurooncol ; 139(1): 33-42, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29582271

RESUMO

INTRODUCTION: Medulloblastoma (MB) is an embryonal tumour that originates from genetic deregulation of cerebellar developmental pathways and is classified into 4 molecular subgroups: SHH, WNT, group 3, and group 4. Hydroxymethylation levels progressively increases during cerebellum development suggesting a possibility of deregulation in MB pathogenesis. The aim of this study was to investigate global hydroxymethylation levels and changes in TET and IDH gene expression in MB samples compared to control cerebellum samples. METHODS: The methods utilized were qRT-PCR for gene expression, dot-blot and immunohistochemistry for global hydroxymethylation levels and sequencing for the investigation of IDH mutations. RESULTS: Our results show that global hydroxymethylation level was decreased in MB, and low 5hmC level was associated with the presence of metastasis. TET1 expression levels were decreased in the WNT subgroup, while TET3 expression levels were decreased in the SHH subgroup. Reduced TET3 expression levels were associated with the presence of events such as relapse and death. Higher expression of IDH1 was observed in MB group 3 samples, whereas no mutations were detected in exon 4 of IDH1 and IDH2. CONCLUSION: These findings suggest that reduction of global hydroxymethylation levels, an epigenetic event, may be important for MB development and/or maintenance, representing a possible target in this tumour and indicating a possible interaction of TET and IDH genes with the developmental pathways specifically activated in the MB subgroups. These genes could be specific targets and markers for each subgroup.


Assuntos
Neoplasias Cerebelares/metabolismo , Metilação de DNA , Isocitrato Desidrogenase/metabolismo , Meduloblastoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/genética , Cerebelo/metabolismo , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Masculino , Meduloblastoma/genética , Mutação , Proteínas Proto-Oncogênicas/genética
12.
Curr Cancer Drug Targets ; 18(3): 287-294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28302031

RESUMO

BACKGROUND: Genetic and epigenetic modifications are closely related to tumor initiation and progression and can provide guidance for understanding tumor functioning, potentially leading to the discovery of new therapies. Studies have associated hypoxia-related genes to tumor progression and chemo/radioresistance in brain tumors. Information on the expression profile of hypoxiarelated genes in pediatric medulloblastoma, although scarce, may reveal relevant information that could support treatment decisions. OBJECTIVE: Our study focused on evaluation the of CA9, CA12, HIF1A, EPAS1, SCL2A1 and VEGF genes in 41 pediatric fresh-frozen medulloblastoma sample. Additionally, we analyzed the effect of hypoxia and normoxia in the pediatric medulloblastoma cell-line UW402. Furthermore, we assessed the effects of HIF1A knockdown in cell-proliferation and methylation levels of genes related to hypoxia, apoptosis and autophagy. METHOD: qPCR was performed to evaluate mRNA levels, and Western blot to confirm HIF1A silencing in both patient samples and cell line. Pyrosequencing was performed to asses the methylation levels after HIF1A knockdown in the UW402 cell line. RESULTS: A higher HIF1A mRNA level was observed in MB patients when compared to the cerebellum (non-tumor match). In UW402 MB cell-line, chemically induced hypoxic resulted in an increase of mRNA levels of HIF1A, VEGF, SCL2A1 and CA9 genes. Additionally, HIF1A knockdown induced a decrease in the expression of hypoxia related genes and a decrease of 30% in cell proliferation was also observed. Also, a significant increase in the methylation of ATG16L1 promoter and decrease in the methylation of EPAS1 promoter were observed after HIF1A knockdown. CONCLUSION: HIF1A knockdown in medulloblastoma cells lead to decreased cellular proliferation, suggesting that HIF1A can be a potential therapeutic target to be explored in the medulloblastoma. However, the mechanisms behind HIF1A protein stabilization and function are very complex and more data need to be generated to potentially use HIF1A as a therapeutical target.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Cerebelares/patologia , Cerebelo/patologia , Metilação de DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Meduloblastoma/patologia , Adolescente , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Cerebelo/metabolismo , Criança , Pré-Escolar , Epigênese Genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lactente , Masculino , Meduloblastoma/genética , Meduloblastoma/metabolismo , Regiões Promotoras Genéticas , Células Tumorais Cultivadas
13.
Cytotechnology ; 65(5): 871-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23325114

RESUMO

Chromosomal heterogeneity is a hallmark of most tumors and it can drive critical events as growth advantages, survival advantages, progression and karyotypic evolution. Medulloblastoma (MB) is the most common malignant central nervous system tumor in children. This work attempted to investigate chromosomal heterogeneity and instability profiles of two MB pediatric cell lines and their relationship with cell phenotype. We performed GTG-banding and cytokinesis-block micronucleus cytome assays, as well as morphological characterization, cell population doubling time, colony-forming efficiency, and chemo-sensitivity assays in two pediatric MB cell lines (UW402 and UW473). Both MB cells showed a high chromosomal heterogeneity. UW473 cells showed ~2 fold higher both clonal- and non-clonal chromosomal alterations than UW402 cells. Besides, UW473 showed two clonal-groups well-differentiated by ploidy level (<2n> and <4n>) and also presented a significantly higher number of chromosomal instability biomarkers. These results were associated with high morphological heterogeneity and survival advantages for UW473 and proliferation advantages for UW402 cells. Moreover, UW473 was significantly more sensitive to methotrexate, temozolomide and cisplatin while UW402 cells were more sensitive to doxorubicin. These data suggest that distinct different degrees of karyotypic heterogeneity and instability may affect neoplasic phenotype of MB cells. These findings bring new insights into cell and tumor biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA