Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Pharmaceutics ; 16(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38931815

RESUMO

Most infectious diseases of the gastrointestinal tract can easily be treated by exploiting the already available antibiotics with the change in administration approach and delivery system. Ciprofloxacin (CIP) is used as a drug of choice for many bacterial infections; however, long-term therapy and off-site drug accumulation lead to an increased risk of tendinitis and peripheral neuropathy. To overcome this issue, nanotechnology is being exploited to encapsulate antibiotics within polymeric structures, which not only facilitates dose maintenance at the infection site but also limits off-site side effects. Here, sodium alginate (SA) and thiol-anchored chitosan (TC) were used to encapsulate CIP via a calcium chloride (CaCl2) cross-linker. For this purpose, the B-390 encapsulator was employed in the preparation of nanobeads using a simple technique. The hydrogel-like sample was then freeze-dried, using trehalose or mannitol as a lyoprotectant, to obtain a fine dry powder. Design of Experiment (DoE) was utilized to optimize the nanobead production, in which the influence of different independent variables was studied for their outcome on the polydispersity index (PDI), particle size, zeta potential, and percentage encapsulation efficiency (% EE). In vitro dissolution studies were performed in simulated saliva fluid, simulated gastric fluid, and simulated intestinal fluid. Antibacterial and anti-inflammatory studies were also performed along with cytotoxicity profiling. By and large, the study presented positive outcomes, proving the advantage of using nanotechnology in fabricating new delivery approaches using already available antibiotics.

2.
Pharmaceutics ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38931827

RESUMO

The current research aims to develop thermosensitive polymeric micelles loaded with risperidone for nasal administration, emphasizing the added benefits of their thermosensitive behavior under nasal conditions. An initial risk assessment facilitated the advanced development process, confirming that the key indicators of thermosensitivity were suitable for nasal application. The polymeric micelles exhibited an average size of 118.4 ± 3.1 nm at ambient temperature and a size of 20.47 ± 1.2 nm at 36.5 °C, in both cases in monodisperse distribution. Factors such as pH and viscosity did not significantly impact these parameters, demonstrating appropriate nasal applicability. The model formulations showed a rapid, burst-like drug release profile in vitro, accompanied by a quick and high permeation rate at nasal conditions. Overall, the Quality by Design-based risk assessment process led to the development of an advanced drug delivery system capable of administering risperidone through the nasal cavity.

3.
Pharmaceutics ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931952

RESUMO

The introduction of the Quality by Design concept in 2004 has brought a paradigm shift in the pharmaceutical industry as well as a new era in pharmaceutical research and development [...].

4.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794251

RESUMO

Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity. The related critical quality attributes (CQAs) were defined as complexation efficacy, complex stability, enzyme recovery and activity. Three risk assessment (RA) tools were used to identify and rank the critical process parameters (CPPs) and critical material attributes (CMAs). From this assessment, the pH of the medium, LYZ:SDS molar ratio and drying conditions were determined as high-risk factors that need to be investigated. To the best of our knowledge, for the first time, electrostatic titration was used as a smart approach to determine the optimum molar ratio at different pH values. Based on the predefined CQAs, pH 8 with an LYZ/SDS molar ratio of 1:8 was found to be the optimal condition for complexation efficiency and recovery (%) of a biologically active enzyme. A cost-effective drying process based on a ventilated oven was developed, which resulted in complex qualities comparable to those obtained by the commonly used freeze-drying method. In a nutshell, the optimum conditions for the preparation of the LYZ/SDS HIP complex were efficiently facilitated by the rational application of QbD principles and the utilization of efficient electrostatic titration and ventilated oven-drying methods.

5.
J Pharm Sci ; 113(7): 1946-1959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643899

RESUMO

Resistance to antibiotics such as Ciprofloxacin (CIP) is becoming a critical issue and needs to be addressed globally. CIP is widely used because of manifold uses; however, the long-term therapy poses serious health risks including FDA black box warnings such as tendinitis and peripheral neuropathy. Therefore, nanotechnology-based products can be an effective measure to improve therapeutic outcomes by maintaining the dose at the target site while reducing the dose-dependent toxicity. Biodegradable and biocompatible polymers, Chitosan (CS) and Hyaluronic acid (HA) were used in this work due to their diverse biological characteristics. A simple yet economical ionic gelation method was employed to synthesize nanoparticles with a plexus-like network; nanoplexes, followed by spray-drying to obtain the dry powders to improve stability. Quality by Design (QbD) approach was utilized during the study for robustness and standardization followed by Design of Experiment (DoE) for optimization in a holistic way. The mean particle size of the optimized powder sample was found to be 301.1 nm with a percentage encapsulation efficiency (% EE) of 78.8%. In-vitro dissolution studies corroborated the controlled release of CIP over 48 h. Also, mathematical kinetic modeling was applied to obtain thorough insight into the mechanism of drug release. Moreover, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were presented to be lower in the case of prepared dry powder as compared to CIP, stating that nanotechnology can improve antimicrobial activity.


Assuntos
Antibacterianos , Quitosana , Ciprofloxacina , Portadores de Fármacos , Ácido Hialurônico , Nanopartículas , Tamanho da Partícula , Pós , Ciprofloxacina/química , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Pós/química , Nanopartículas/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Quitosana/química , Ácido Hialurônico/química , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos/métodos , Testes de Sensibilidade Microbiana
6.
Expert Opin Drug Deliv ; 21(4): 611-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588551

RESUMO

INTRODUCTION: Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED: This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION: In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.


Assuntos
Administração Intranasal , Antibacterianos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Humanos , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Animais , Desenvolvimento de Medicamentos/métodos , Farmacorresistência Bacteriana , Cavidade Nasal , Estabilidade de Medicamentos , Química Farmacêutica
7.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38256908

RESUMO

Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.

8.
Eur J Pharm Sci ; 193: 106666, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081373

RESUMO

Transdermal delivery of active ingredients is a challenge for pharmaceutical technology due to their inadequate penetration properties and the barrier function of the skin. The necessity of painless, effective, topical therapy for the aging population is growing, and a variety of diclofenac sodium-containing semi-solid preparations are available to alleviate the symptoms of these ailments. Our purpose was to formulate a novel composition with higher drug content to enhance drug release and permeation, thereby providing more effective therapy. Another goal was to maintain the concentration of the organic solvent mixture below 30%, to protect the skin barrier. Firstly, literature and market research were conducted, based on which the appropriate excipients for the target formulation were selected. Solubility tests were conducted with binary and ternary mixtures. As a result, the optimal ternary mixture was chosen. Hydrogels containing 1, 5, and 7% of diclofenac sodium were prepared and the stability of the formulations were studied by microscopic measurements and cytotoxicity test were carried out of the components also. The release and permeation of diclofenac sodium were investigated in different concentrations. It can be concluded that we have succeeded in preparing a topically applicable stable diclofenac sodium hydrogel with higher concentration, drug release, and improved skin permeation than the formulations available on the market.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco , Absorção Cutânea , Hidrogéis/metabolismo , Pele/metabolismo , Administração Cutânea
9.
Heliyon ; 9(11): e21416, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027871

RESUMO

Cyclodextrins (CD) are used extensively in the pharmaceutical industry to improve the water solubility and bioavailability of drugs. Preparing ternary systems by applying a third component can enhance these beneficial effects. The complexation methods of these ternary systems are the same as those of two-component complexes. These methods are solvent (co-evaporation, co-precipitation, etc.) or solventless "green" techniques (co-grinding, microwave irradiation, etc.). Using solvent-free methods is considered to be an economically and environmentally desirable technology. This study aimed to prepare ternary systems by the co-grinding method and evaluate the effect of a third component by comparing it to products obtained by solvent methods, binary systems, and marketed products. For that, we used terbinafine hydrochloride as a model drug, sulfobutyl-ether-beta-cyclodextrin as a complexation agent and 5 or 15 w/w% of polyvinylpyrrolidone K-90 (PVP) or hydroxypropyl methylcellulose (HPMC) as auxiliary components. Physicochemical evaluation (X-Ray Diffractometry, Differential Scanning Calorimetry, Thermogravimetry) showed that new solid phases were formed, while Scanning Electron Microscopy was performed to study morphological aspects of the products. Fourier transform infrared spectroscopic measurements suggested different intermolecular interactions depending on the type of polymer. In vitro dissolution studies showed beneficial effects of CD and further improvement with the applied polymers. Products showed less cell toxicity with one exception. Both polymers enhanced the physicochemical and in vitro properties, suggesting a greater bioavailability of the model drug. However, the percentage of polymers applied did not appear to be an influencing factor for these properties.

10.
Gels ; 9(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998986

RESUMO

Bovine serum albumin (BSA) has been used extensively as a suitable carrier system for alternative drug delivery routes, such as nasal administration. However, the optimization of BSA nanoparticles with respect to their nasal applicability has not been widely studied. The present study focuses on the characterization of BSA nanoparticles prepared using the desolvation method, followed by a gelation process to facilitate intranasal drug delivery. The results demonstrated that the ratio of BSA and the desolvating agent, ethanol, played a critical role in the nanoparticle characteristics of the BSA nanogel matrices (BSA-NGs). Based on the gelling properties, the formulations of BSA-NG 2, BSA-NG 4, and BSA-NG 6 were selected for further investigation. The Raman spectra confirmed that there were no specific changes to the secondary structures of the BSA. The mucoadhesion studies revealed moderately high mucoadhesive properties, with a mucin binding efficiency (MBE) value of around 67%, allowing the dose to avoid elimination due to rapid mucociliary clearance of the nasal passage. Via studying the nexus of the carrier system, BSA-NGs loaded with dexamethasone as a model drug were prepared and evaluated by differential scanning calorimetry (DSC) and thermal gravimetry (TG), ascertaining that no ethanol remained in the samples after the freeze-drying process. Furthermore, the viscosity measurements exhibited moderate viscosity, which is suitable for nasal liquid preparations. The in vitro release studies performed with a simulated nasal electrolyte solution (SNES) medium showed 88.15-95.47% drug release within 4 h. In conclusion, BSA nanoparticle gelling matrices can offer potential, value-added drug delivery carriers for improved nasal drug administration.

11.
Molecules ; 28(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836823

RESUMO

The current research is aimed at investigating the relationship between the formulation components and conditions in the case of a binary drug delivery system, where antidiabetic drugs are co-formulated into polymeric micelles embedded in sodium alginate. Compared to chemical modifications of polymers with alginate, our development provides a simpler and scalable formulation process. Our results prove that a multi-level factorial design-based approach can ensure the development of a value-added polymeric micelle formulation with an average micelle size of 123.6 ± 3.1 nm and a monodisperse size distribution, showing a polydispersity index value of 0.215 ± 0.021. The proper nanoparticles were co-formulated with sodium alginate as a biologically decomposing and safe-to-administer biopolymer. The Box-Behnken factorial design ensured proper design space development, where the optimal sodium alginate bead formulation had a uniform, extended-release drug release mechanism similar to commercially available tablet preparations. The main conclusion is that the rapid-burst-like drug release can be hindered via the embedment of nanocarriers into biopolymeric matrices. The thermally stable formulation also holds the benefit of uniform active substance distribution after freeze-drying.


Assuntos
Alginatos , Micelas , Alginatos/química , Sistemas de Liberação de Medicamentos/métodos , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Polímeros , Tamanho da Partícula
12.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895918

RESUMO

In this present formulation study, vinpocetine-loaded nano-spray-dried polymeric micelles were developed via nano-spray-drying. Three different mucoadhesive excipients were applied in the studies, namely chitosan, hyaluronic acid and hydroxypropyl methylcellulose. In all cases, the formulations had a proper particle size and drug content after drying with spherical morphology and amorphous structure. After rapid dissolution in water, the polymeric micelles had a particle size around 100-130 nm, in monodisperse size distribution. The high encapsulation efficiency (>80%) and high solubilization (approx. 300-fold increase in thermodynamic solubility) contributed to rapid drug release (>80% in the first 15 min) and fast passive diffusion at simulated nasal conditions. The formulated prototype preparations fulfilled the demands of a low-viscosity, moderately mucoadhesive nasal drug delivery system, which may be capable of increasing the overall bioavailability of drugs administered via the auspicious nasal drug delivery route.

13.
Int J Pharm ; 645: 123435, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741560

RESUMO

A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.


Assuntos
Amoxicilina , Nanopartículas , Soroalbumina Bovina , Administração Intranasal , Mucosa Nasal , Antibacterianos , Polímeros , Géis , Sistemas de Liberação de Medicamentos , Polissacarídeos Bacterianos
14.
Int J Pharm ; 643: 123070, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230369

RESUMO

Pulmonary delivery is an alternative route of administration with numerous advantages over conventional routes of administration. It provides low enzymatic exposure, fewer systemic side effects, no first-pass metabolism, and concentrated drug amounts at the site of the disease, making it an ideal route for the treatment of pulmonary diseases. Owing to the thin alveolar-capillary barrier, and large surface area that facilitates rapid absorption to the bloodstream in the lung, systemic delivery can be achieved as well. Administration of multiple drugs at one time became urgent to control chronic pulmonary diseases such as asthma and COPD, thus, development of drug combinations was proposed. Administration of medications with variable dosages from different inhalers leads to overburdening the patient and may cause low therapeutic intervention. Therefore, products that contain combined drugs to be delivered via a single inhaler have been developed to improve patient compliance, reduce different dose regimens, achieve higher disease control, and boost therapeutic effectiveness in some cases. This comprehensive review aimed to highlight the growth of drug combinations by inhalation over time, obstacles and challenges, and the possible progress to broaden the current options or to cover new indications in the future. Moreover, various pharmaceutical technologies in terms of formulation and device in correlation with inhaled combinations were discussed in this review. Hence, inhaled combination therapy is driven by the need to maintain and improve the quality of life for patients with chronic respiratory diseases; promoting drug combinations by inhalation to a higher level is a necessity.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Asma/tratamento farmacológico , Nebulizadores e Vaporizadores , Combinação de Medicamentos , Preparações Farmacêuticas , Cooperação do Paciente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
15.
Int J Pharm ; 632: 122594, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36626972

RESUMO

In our present series of experiments, we investigated the nasal applicability of the previously developed Soluplus® - meloxicam polymeric micelle formulation. Utilizing the nasal drug investigations, moderately high mucoadhesion was experienced in nasal conditions which alongside the appropriate physicochemical properties in liquid state, contributed to rapid drug absorption through human RPMI 2650 cell line. Ex vivo studies also confirmed that higher nasal mucosal permeation could be expected with the polymeric micelle nanoformulation compared to a regular MEL suspension. Also, the nanoformulation met the requirements to provide rapid drug permeation in less 1 h of our measurement. The non-toxic, non-cell barrier damaging formulation also proved to provide a successful passive transport across excides human nasal mucosa. Based on our in vivo investigations, it can be concluded that the polymeric micelle formulation provides higher meloxicam transport to the central nervous system followed by a slow and long-lasting elimination process compared to prior results where physical particle size reduction methods were applied. With these results, a promising solution and nanocarrier is proposed for the successful transport of non-steroidal anti-inflammatory drugs with acidic character to the brain.


Assuntos
Micelas , Mucosa Nasal , Humanos , Administração Intranasal , Meloxicam/metabolismo , Mucosa Nasal/metabolismo , Polímeros/química , Encéfalo/metabolismo
16.
Gels ; 8(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421572

RESUMO

A high dose of amoxicillin is recommended as the first-line therapy for acute bacterial rhinosinusitis (ABR). However, oral administration of amoxicillin is connected to many adverse reactions coupled with moderate bioavailability (~60%). Therefore, this study aimed to develop a topical nasal preparation of amoxicillin, employing a thermoresponsive nanogel system to increase nasal residence time and prolong drug release. Rheological investigations revealed that formulations containing 21−23% w/w Poloxamer 407 (P407) were in accordance with the requirement of nasal administration (gelling temperature ~35 °C). The average hydrodynamic diameter (<200 nm), pH (6.7−6.9), and hypertonic osmolality (611−663 mOsmol/L) of the in situ gelling nasal nanogel appeared as suitable characteristics for local rhinosinusitis treatment. Moreover, taking into account the mucoadhesive strength and drug release studies, the 21% w/w P407 could be considered as an optimized concentration for effective nasal delivery. Antibacterial activity studies showed that the ability of amoxicillin-loaded in situ gelling nasal nanogel to inhibit bacterial growth (five common ABR pathogens) preserved its effectiveness in comparison to 1 mg/mL amoxicillin aqueous solution as a positive control. Altogether, the developed amoxicillin-loaded in situ gelling thermoresponsive nasal nanogel can be a potential candidate for local antibiotic therapy in the nasal cavity.

17.
Biomedicines ; 10(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428514

RESUMO

The vast scope of 3D printing has ignited the production of tailored medical device (MD) development and catalyzed a paradigm shift in the health-care industry, particularly following the COVID pandemic. This review aims to provide an update on the current progress and emerging opportunities for additive manufacturing following the introduction of the new medical device regulation (MDR) within the EU. The advent of early-phase implementation of the Quality by Design (QbD) quality management framework in MD development is a focal point. The application of a regulatory supported QbD concept will ensure successful MD development, as well as pointing out the current challenges of 3D bioprinting. Utilizing a QbD scientific and risk-management approach ensures the acceleration of MD development in a more targeted way by building in all stakeholders' expectations, namely those of the patients, the biomedical industry, and regulatory bodies.

18.
Eur J Pharm Biopharm ; 180: 81-90, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183927

RESUMO

Our present series of experiments was to create a value-added formulation that has the potential to exert a powerful and long-lasting antibacterial effect for use in ophthalmology. Erythromycin-loaded polymeric micelles were formulated with a micelle size of 87.14 nm in a monodisperse distribution with 86.94 % encapsulation efficiency. To decrease the polymeric micelle-like burst effect of these nanoparticles, the formulation was dispersed in a Carbopol 934P gel base to prolong the drug release and permeation profile of erythromycin. With successful incorporation, a short gelling time with proper sol to gel transition was experienced in the form of transparent gels. The optimized formulation has high mucoadhesion which is a critical factor for prolonging residence time. With the initial burst, the drug release was saturated with more than 75 % of the drug released in simulated tear fluid. Corneal permeability investigations revealed that the gel formulation provides the value-added properties of polymeric micelles, with elevated permeability through into the aqueous humour across the cornea. While retaining its antimicrobial activity, the formulation may be capable to be utilized as an innovative ophthalmic formulation for treating bacterial infections of the eye.


Assuntos
Eritromicina , Micelas , Eritromicina/farmacologia , Géis/farmacologia , Polímeros/farmacologia , Córnea , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/farmacologia
19.
Pharmaceutics ; 14(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36297472

RESUMO

Albumin nanocarrier research and development is a challenging area in the field of personalized medicine and in providing advanced therapeutic solutions. Albumin as a biocompatible, nonimmunogenic, and non-toxic protein carrier that can be exploited to conjugate drugs with poor bioavailability to improve on this feature. With many different perspectives and desired target profiles, a systematic structural approach must be used in nanoparticle development. The extended Research and Development (R&D) Quality by Design thinking and methodology proved to be useful in case of specific nanoparticle development processes before. However, the coacervation method is the most frequently applied preparation method for HSA nanoparticles; there is a lack of existing research work which has directly determined the influence of process parameters, control strategy, or design space. With a quality-management-driven strategy, a knowledge space was developed for these versatile nanoparticles and an initial risk assessment was conducted on the quality-affecting factors regarding the coacervation method, followed by an optimization process via Plackett-Burman and Box-Behnken experimental design. As a result of screening the effect of process variables on the fabrication of HSA nanoparticles, an optimized colloidal drug delivery system was engineered with desired nanoparticulate properties.

20.
Biomedicines ; 10(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36289841

RESUMO

In recent years, we have witnessed prominent improvements in urinary catheter coatings to tackle the commonly occurring catheter-associated urinary tract infection (CAUTI) in catheterized patients. CAUTIs are claimed to be one of the most frequent nosocomial infections that can lead to various complications, from catheter encrustation to severe septicaemia and pyelonephritis. Besides general prevention hygienic strategies, antimicrobial-coated urinary catheters show great potential in the prevention of urinary catheter-associated complications. The aim of this review is to present and evaluate recent updates on the development of antimicrobial urinary catheters in the context of the aetiology of urinary malfunction. Subsequently, we shed some light on future perspectives of utilizing 3D printing and the surrounding regulatory directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA