Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Front Immunol ; 15: 1331217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686385

RESUMO

Interleukin (IL)-23, an IL-12 cytokine family member, is a hierarchically dominant regulatory cytokine in a cluster of immune-mediated inflammatory diseases (IMIDs), including psoriasis, psoriatic arthritis, and inflammatory bowel disease. We review IL-23 biology, IL-23 signaling in IMIDs, and the effect of IL-23 inhibition in treating these diseases. We propose studies to advance IL-23 biology and unravel differences in response to anti-IL-23 therapy. Experimental evidence generated from these investigations could establish a novel molecular ontology centered around IL-23-driven diseases, improve upon current approaches to treating IMIDs with IL-23 inhibition, and ultimately facilitate optimal identification of patients and, thereby, outcomes.


Assuntos
Interleucina-23 , Animais , Humanos , Artrite Psoriásica/imunologia , Artrite Psoriásica/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/terapia , Interleucina-23/antagonistas & inibidores , Interleucina-23/imunologia , Interleucina-23/metabolismo , Psoríase/imunologia , Psoríase/tratamento farmacológico , Transdução de Sinais
2.
Clin Rheumatol ; 43(5): 1591-1604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472528

RESUMO

OBJECTIVES: To evaluate the association between enthesitis resolution (ER) and dactylitis resolution (DR) and meaningful improvements in patient-reported outcomes (PROs) among biologic-naïve patients with PsA receiving guselkumab in the DISCOVER-2 study. METHODS: Enthesitis and dactylitis, characteristic lesions of PsA, were evaluated by independent assessors using the Leeds Enthesitis Index (range, 0-6) and Dactylitis Severity Score (range, 0-60). Proportions of patients with ER or DR (score = 0) among those with score > 0 at baseline were determined at weeks 24, 52, and 100. PROs included: fatigue (Functional Assessment of Chronic Illness Therapy-Fatigue [FACIT-Fatigue]), pain (0-100 visual analog scale), physical function (Health Assessment Questionnaire-Disability Index [HAQ-DI]), and health-related quality of life (36-item Short-Form Health Survey physical/mental component summary [SF-36 PCS/MCS]). Meaningful responses were defined as: improvements of ≥ 4 for FACIT-Fatigue, ≥ 0.35 for HAQ-DI, and ≥ 5 for SF-36 PCS/MCS and absolute scores of ≤ 15 for minimal pain and ≤ 0.5 for normalized HAQ-DI. Associations between ER/DR status and PRO response status were tested using a Chi-square test. RESULTS: Guselkumab-treated patients with ER were more likely than those without ER to achieve minimal pain (p < 0.001), normalized HAQ-DI (p < 0.001), and PCS response (p < 0.05) at weeks 24, 52, and 100. Patients with DR were more likely than those without DR to achieve FACIT-Fatigue response at week 24 and week 52 (both p ≤ 0.01) and minimal pain at week 24 and normalized HAQ-DI at week 52 (both p ≤ 0.03). CONCLUSION: In biologic-naïve patients with active PsA treated with guselkumab, achieving ER or DR was associated with durable improvements in selected PROs, including those of high importance to patients. TRIAL REGISTRATION: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT03158285; Registered: May 16, 2017. Key Points • At week 100, 65% and 76% of guselkumab-treated patients achieved enthesitis and dactylitis resolution (ER/DR). • Achieving ER was associated with achieving DR and vice versa through the end of study. • Achieving ER or DR was associated with durable and meaningful improvements in selected patient-reported outcomes.


Assuntos
Anticorpos Monoclonais Humanizados , Antirreumáticos , Artrite Psoriásica , Produtos Biológicos , Entesopatia , Humanos , Antirreumáticos/uso terapêutico , Artrite Psoriásica/complicações , Artrite Psoriásica/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Entesopatia/tratamento farmacológico , Dor/tratamento farmacológico , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Resultado do Tratamento
3.
Sci Immunol ; 7(77): eabq3254, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36367947

RESUMO

The cytokine interleukin-23 (IL-23) is critical for development and maintenance of autoimmune inflammation in nonlymphoid tissues; however, the mechanism through which IL-23 supports tissue-specific immunity remains unclear. In mice, we found that circulating memory T cells were dispensable for anamnestic protection from Candida albicans skin infection, and tissue-resident memory (TRM) cell-mediated protection from C. albicans reinfection required IL-23. Administration of anti-IL-23 receptor antibody to mice after resolution of primary C. albicans infection resulted in loss of CD69+ CD103+ tissue-resident memory T helper 17 (TRM17) cells from skin, and clinical anti-IL-23 therapy depleted TRM17 cells from skin of patients with psoriasis. IL-23 receptor blockade impaired TRM17 cell proliferation but did not affect apoptosis susceptibility or tissue egress. IL-23 produced by CD301b+ myeloid cells was required for TRM17 maintenance in skin after C. albicans infection, and CD301b+ cells were necessary for TRM17 expansion during the development of imiquimod dermatitis. This study demonstrates that locally produced IL-23 promotes in situ proliferation of cutaneous TRM17 cells to support their longevity and function and provides mechanistic insight into the durable efficacy of IL-23 blockade in the treatment of psoriasis.


Assuntos
Interleucina-23 , Psoríase , Camundongos , Animais , Memória Imunológica , Interleucina-17 , Candida albicans/fisiologia , Proliferação de Células
5.
Sci Immunol ; 5(46)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332067

RESUMO

Signal transducer and activator of transcription (STAT) proteins have critical roles in the development and function of immune cells. STAT signaling is often dysregulated in patients with inflammatory bowel disease (IBD), suggesting the importance of STAT regulation during the disease process. Moreover, genetic alterations in STAT3 and STAT5 (e.g., deletions, mutations, and single-nucleotide polymorphisms) are associated with an increased risk for IBD. In this study, we elucidated the precise roles of STAT5 signaling in group 3 innate lymphoid cells (ILC3s), a key subset of immune cells involved in the maintenance of gut barrier integrity. We show that mice lacking either STAT5a or STAT5b are more susceptible to Citrobacter rodentium-mediated colitis and that interleukin-2 (IL-2)- and IL-23-induced STAT5 drives IL-22 production in both mouse and human colonic lamina propria ILC3s. Mechanistically, IL-23 induces a STAT3-STAT5 complex that binds IL-22 promoter DNA elements in ILC3s. Our data suggest that STAT5a/b signaling in ILC3s maintains gut epithelial integrity during pathogen-induced intestinal disease.


Assuntos
Colite/imunologia , Interleucina-23/imunologia , Interleucina-2/imunologia , Interleucinas/biossíntese , Fator de Transcrição STAT5/imunologia , Animais , Interleucinas/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/imunologia , Interleucina 22
6.
Science ; 366(6464)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649166

RESUMO

How early-life colonization and subsequent exposure to the microbiota affect long-term tissue immunity remains poorly understood. Here, we show that the development of mucosal-associated invariant T (MAIT) cells relies on a specific temporal window, after which MAIT cell development is permanently impaired. This imprinting depends on early-life exposure to defined microbes that synthesize riboflavin-derived antigens. In adults, cutaneous MAIT cells are a dominant population of interleukin-17A (IL-17A)-producing lymphocytes, which display a distinct transcriptional signature and can subsequently respond to skin commensals in an IL-1-, IL-18-, and antigen-dependent manner. Consequently, local activation of cutaneous MAIT cells promotes wound healing. Together, our work uncovers a privileged interaction between defined members of the microbiota and MAIT cells, which sequentially controls both tissue-imprinting and subsequent responses to injury.


Assuntos
Microbiota/imunologia , Células T Invariantes Associadas à Mucosa/citologia , Riboflavina/biossíntese , Cicatrização/imunologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Vida Livre de Germes , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interleucina-1/imunologia , Interleucina-17/imunologia , Interleucina-18/imunologia , Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Pele/imunologia , Pele/microbiologia , Organismos Livres de Patógenos Específicos
7.
Immunity ; 50(4): 892-906, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995505

RESUMO

The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.


Assuntos
Citocinas/imunologia , Interleucina-17/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Encéfalo/imunologia , Regulação da Expressão Gênica , Humanos , Infecções/imunologia , Inflamação/imunologia , Interleucina-17/antagonistas & inibidores , Camundongos , Terapia de Alvo Molecular , Neoplasias/imunologia , Proteínas de Ligação a RNA/imunologia , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/imunologia , Transdução de Sinais , Estresse Fisiológico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Ferimentos e Lesões/imunologia
8.
Bio Protoc ; 9(3): e3153, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654962

RESUMO

Colon inflammation or colitis affects more than 1 million people worldwide. Several pre-clinical models, including chemical-induced (i.e., DSS, TNBS) or pathogen-induced (i.e., Citrobacter rodentium) have been used to study mechanisms involved in the development and regulation of colitis. Anti-CD40 induced colitis model has gained acceptance to study the roles of innate immune cells during acute intestinal inflammation. Here we describe a rapid, robust and reproducible protocol to induce and analyze anti-CD40 mediated colitis in mice.

10.
Cancer Immunol Res ; 6(10): 1199-1211, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30154083

RESUMO

GITR is a costimulatory receptor currently undergoing phase I clinical trials. Efficacy of anti-GITR therapy in syngeneic mouse models requires regulatory T-cell depletion and CD8+ T-cell costimulation. It is increasingly appreciated that immune cell proliferation and function are dependent on cellular metabolism. Enhancement of diverse metabolic pathways leads to different immune cell fates. Little is known about the metabolic effects of GITR agonism; thus, we investigated whether costimulation via GITR altered CD8+ T-cell metabolism. We found activated, GITR-treated CD8+ T cells upregulated nutrient uptake, lipid stores, glycolysis, and oxygen consumption rate (OCR) in vitro Using MEK, PI3Kδ, and metabolic inhibitors, we show increased metabolism is required, but not sufficient, for GITR antibody (DTA-1)-induced cellular proliferation and IFNγ production. In an in vitro model of PD-L1-induced CD8+ T-cell suppression, GITR agonism alone rescued cellular metabolism and proliferation, but not IFNγ production; however, DTA-1 in combination with anti-PD-1 treatment increased IFNγ production. In the MC38 mouse tumor model, GITR agonism significantly increased OCR and IFNγ and granzyme gene expression in both tumor and draining lymph node (DLN) CD8+ T cells ex vivo, as well as basal glycolysis in DLN and spare glycolytic capacity in tumor CD8+ T cells. DLN in GITR-treated mice showed significant upregulation of proliferative gene expression compared with controls. These data show that GITR agonism increases metabolism to support CD8+ T-cell proliferation and effector function in vivo, and that understanding the mechanism of action of agonistic GITR antibodies is crucial to devising effective combination therapies. Cancer Immunol Res; 6(10); 1199-211. ©2018 AACR.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Citocinas/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Animais , Anticorpos/farmacologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
11.
Immunity ; 49(2): 342-352.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30097293

RESUMO

Interleukin-22 (IL-22)-producing group 3 innate lymphoid cells (ILC3) maintains gut homeostasis but can also promote inflammatory bowel disease (IBD). The regulation of ILC3-dependent colitis remains to be elucidated. Here we show that Foxp3+ regulatory T cells (Treg cells) prevented ILC3-mediated colitis in an IL-10-independent manner. Treg cells inhibited IL-23 and IL-1ß production from intestinal-resident CX3CR1+ macrophages but not CD103+ dendritic cells. Moreover, Treg cells restrained ILC3 production of IL-22 through suppression of CX3CR1+ macrophage production of IL-23 and IL-1ß. This suppression was contact dependent and was mediated by latent activation gene-3 (LAG-3)-an immune checkpoint receptor-expressed on Treg cells. Engagement of LAG-3 on MHC class II drove profound immunosuppression of CX3CR1+ tissue-resident macrophages. Our study reveals that the health of the intestinal mucosa is maintained by an axis driven by Treg cells communication with resident macrophages that withhold inflammatory stimuli required for ILC3 function.


Assuntos
Antígenos CD/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Colite/imunologia , Colite/patologia , Subunidade p19 da Interleucina-23/imunologia , Mucosa Intestinal/patologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/transplante , Proteína do Gene 3 de Ativação de Linfócitos , Interleucina 22
12.
Cancer Immunol Res ; 6(8): 978-987, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29921599

RESUMO

Tumor-induced immunosuppression is mediated through various mechanisms including engagement of immune checkpoint receptors on effector cells, function of immunoregulatory cells such as regulatory T cells and myeloid-derived suppressor cells, and deployment of immunosuppressive cytokines such as TGFß and IL10. IL23 is a cytokine that negatively affects antitumor immunity. In this study, we investigated whether IL23-deficient (IL23p19-/-) and IL23R-deficient (IL23R-/-) mice phenocopied each other, with respect to their tumor control. We found that IL23R-/- mice had significantly fewer lung metastases compared with IL23p19-/- mice across three different experimental lung metastasis models (B16F10, LWT1, and RM-1). Similarly, IL23R blocking antibodies were more effective than antibodies neutralizing IL23 in suppressing experimental lung metastases. The antimetastatic activity of anti-IL23R was dependent on NK cells and IFNγ but independent of CD8+ T cells, CD4+ T cells, activating Fc receptors, and IL12. Furthermore, our data suggest this increased antitumor efficacy was due to an increase in the proportion of IFNγ-producing NK cells in the lungs of B16F10 tumor-bearing mice. Anti-IL23R, but not anti-IL23p19, partially suppressed lung metastases in tumor-bearing mice neutralized for IL12p40. Collectively, our data imply that IL23R has tumor-promoting effects that are partially independent of IL23p19. Blocking IL23R may be more effective than neutralizing IL23 in the suppression of tumor metastases. Cancer Immunol Res; 6(8); 978-87. ©2018 AACR.


Assuntos
Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Receptores de Interleucina/antagonistas & inibidores , Animais , Imunoterapia/métodos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-23/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/deficiência , Receptores de Interleucina/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Res ; 77(5): 1108-1118, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122327

RESUMO

Agonistic monoclonal antibodies (mAb) targeting the T-cell receptor coregulatory molecule GITR exert potent therapeutic activities in preclinical tumor models. Although anti-GITR mAb are thought to act by depleting and destabilizing the intratumoral T regulatory cell (Treg) population, the precise mechanism of action is obscure. Here, we addressed this issue using a Treg fate-mapping approach, which revealed that Treg loss was primarily due to cell depletion, with minimal evidence of Treg conversion to a non-Foxp3-expressing population. Further characterization of persisting Tregs following anti-GITR mAb treatment showed that a highly activated subpopulation of CD44hiICOShi intratumoral Tregs were preferentially targeted for elimination, with the remaining Tregs exhibiting a less suppressive phenotype. With these changes in the Treg population, intratumoral CD8+ T cells acquired a more functional phenotype characterized by downregulation of the exhaustion markers PD-1 and LAG-3. This reversal of CD8+ T-cell exhaustion was dependent on both agonistic GITR signaling and Treg depletion, as neither mechanism by itself could fully rescue the exhaustion phenotype. Tests of anti-human GITR antibody MK-4166 in a humanized mouse model of cancer mimicked many of the effects of anti-mouse GITR mAb in syngeneic tumor models, decreasing both Treg numbers and immune suppressor phenotype while enhancing effector responsiveness. Overall, our results show how anti-GITR mAb shifts Treg populations to enable immune attack on tumors, with clinical implications for molecular markers to modify emerging treatments. Cancer Res; 77(5); 1108-18. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias do Colo/terapia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Depleção Linfocítica/métodos , Melanoma/terapia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/agonistas , Humanos , Imunoterapia/métodos , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
14.
Cell Rep ; 17(12): 3206-3218, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009290

RESUMO

Recent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4+CD8+ (DP) thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development. In this study, we show that in addition to regulating DP thymocytes survival, RORγT also controls genes that regulate thymocyte migration, proliferation, and T cell receptor (TCR)α selection. Strikingly, pharmacological inhibition of RORγ skews TCRα gene rearrangement, limits T cell repertoire diversity, and inhibits development of autoimmune encephalomyelitis. Thus, targeting RORγT not only inhibits Th17 cell development and function but also fundamentally alters thymic-emigrant recognition of self and foreign antigens. The analysis of RORγ inhibitors has allowed us to gain a broader perspective of the diverse function of RORγT and its impact on T cell biology.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Timócitos/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/terapia , Regulação da Expressão Gênica/imunologia , Rearranjo Gênico/genética , Humanos , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Células Th17/efeitos dos fármacos , Células Th17/imunologia
15.
J Clin Invest ; 126(9): 3541-55, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27500496

RESUMO

Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell-mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the ß2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4ß7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of ß2 integrin-expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non-Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10-regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers.


Assuntos
Linfócitos T CD4-Positivos/citologia , Trato Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro/imunologia , Memória Imunológica , Transferência Adotiva , Animais , Células da Medula Óssea/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Antígenos CD18/metabolismo , Proliferação de Células , Separação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunoensaio , Inflamação , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de Interleucina/metabolismo
16.
Cancer Sci ; 107(9): 1206-14, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27384869

RESUMO

Although it has been suspected that inflammation is associated with increased tumor metastasis, the exact type of immune response required to initiate cancer progression and metastasis remains unknown. In this study, by using an in vivo tumor progression model in which low tumorigenic cancer cells acquire malignant metastatic phenotype after exposure to inflammation, we found that IL-17A is a critical cue for escalating cancer cell malignancy. We further demonstrated that the length of exposure to an inflammatory microenvironment could be associated with acquiring greater tumorigenicity and that IL-17A was critical for amplifying such local inflammation, as observed in the production of IL-1ß and neutrophil infiltration following the cross-talk between cancer and host stromal cells. We further determined that γδT cells expressing Vδ1 semi-invariant TCR initiate cancer-promoting inflammation by producing IL-17A in an MyD88/IL-23-dependent manner. Finally, we identified CD30 as a key molecule in the inflammatory function of Vδ1T cells and the blockade of this pathway targeted this cancer immune-escalation process. Collectively, these results reveal the importance of IL-17A-producing CD30(+) Vδ1T cells in triggering inflammation and orchestrating a microenvironment leading to cancer progression.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Interleucina-17/biossíntese , Antígeno Ki-1/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Imunidade , Inflamação/complicações , Camundongos , Camundongos Knockout , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral/imunologia
17.
Am J Respir Cell Mol Biol ; 55(5): 697-707, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27351934

RESUMO

We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23-/-) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23-/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23-/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.


Assuntos
Interleucina-23/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Quimiocinas/metabolismo , Progressão da Doença , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-23/deficiência , Cinética , Pulmão/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Elastase Pancreática , Pneumonia/complicações , Pneumonia/patologia , Enfisema Pulmonar/complicações , Enfisema Pulmonar/patologia , Sus scrofa
18.
J Immunol ; 196(8): 3227-31, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26927798

RESUMO

Chronic obstructive pulmonary disease (COPD) is a devastating disease with no effective therapies. We investigated the role of the C-type lectin receptor, CLEC5A, in macrophage activation and pulmonary pathogenesis in a mouse model of COPD. We demonstrate that CLEC5A is expressed on alveolar macrophages in mice exposed long-term to cigarette smoke (CS), as well as in human smokers. We also show that CLEC5A-mediated activation of macrophages enhanced cytokine elaboration alone, as well as in combination with LPS or GM-CSF in CS-exposed mice. Furthermore, usingClec5a-deficient mice, we demonstrate that CS-induced macrophage responsiveness is mediated by CLEC5A, and CLEC5A is required for the development of inflammation, proinflammatory cytokine expression, and airspace enlargement. These findings suggest a novel mechanism that promotes airway inflammation and pathologies in response to CS exposure and identifies CLEC5A as a novel target for the therapeutic control of COPD pathogenesis.


Assuntos
Lectinas Tipo C/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Receptores de Superfície Celular/imunologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Inflamação/imunologia , Lectinas Tipo C/genética , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores de Superfície Celular/genética
19.
Immunity ; 44(1): 131-142, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26750311

RESUMO

Interleukin-23 (IL-23) is a pro-inflammatory cytokine required for the pathogenicity of T helper 17 (Th17) cells but the molecular mechanisms governing this process remain unclear. We identified the transcription factor Blimp-1 (Prdm1) as a key IL-23-induced factor that drove the inflammatory function of Th17 cells. In contrast to thymic deletion of Blimp-1, which causes T cell development defects and spontaneous autoimmunity, peripheral deletion of this transcription factor resulted in reduced Th17 activation and reduced severity of autoimmune encephalomyelitis. Furthermore, genome-wide occupancy and overexpression studies in Th17 cells revealed that Blimp-1 co-localized with transcription factors RORγt, STAT-3, and p300 at the Il23r, Il17a/f, and Csf2 cytokine loci to enhance their expression. Blimp-1 also directly bound to and repressed cytokine loci Il2 and Bcl6. Taken together, our results demonstrate that Blimp-1 is an essential transcription factor downstream of IL-23 that acts in concert with RORγt to activate the Th17 inflammatory program.


Assuntos
Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Células Th17/imunologia , Fatores de Transcrição/imunologia , Animais , Diferenciação Celular/imunologia , Separação Celular , Imunoprecipitação da Cromatina , Encefalomielite Autoimune Experimental/imunologia , Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética
20.
Immunity ; 43(4): 727-38, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26431948

RESUMO

Whether interleukin-17A (IL-17A) has pathogenic and/or protective roles in the gut mucosa is controversial and few studies have analyzed specific cell populations for protective functions within the inflamed colonic tissue. Here we have provided evidence for IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury that limits excessive permeability and maintains barrier integrity. Analysis of epithelial cells showed that in the absence of signaling via the IL-17 receptor adaptor protein Act-1, the protective effect of IL-17A was abrogated and inflammation was enhanced. We have demonstrated that after acute intestinal injury, IL-23R(+) γδ T cells in the colonic lamina propria were the primary producers of early, gut-protective IL-17A, and this production of IL-17A was IL-23 independent, leaving protective IL-17 intact in the absence of IL-23. These results suggest that IL-17-producing γδ T cells are important for the maintenance and protection of epithelial barriers in the intestinal mucosa.


Assuntos
Colite/fisiopatologia , Interleucina-17/fisiologia , Interleucina-23/fisiologia , Mucosa Intestinal/fisiopatologia , Doença Aguda , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Linhagem Celular Tumoral , Polaridade Celular , Colite/induzido quimicamente , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epitélio/fisiopatologia , Proteínas de Homeodomínio/fisiologia , Humanos , Interleucina-17/deficiência , Interleucina-17/farmacologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Ocludina/metabolismo , Permeabilidade , Transporte Proteico , Receptores de Antígenos de Linfócitos T gama-delta/análise , Proteínas Recombinantes/farmacologia , Junções Íntimas/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA