Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 472, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320527

RESUMO

Xanthomonas arboricola pv. pruni (Xap) is the causal agent of bacterial spot of stone fruits and almond (Prunus spp). Detection of Xap is typically carried out using quantitative real-time PCR (qPCR) combined with culture-based isolation. However, qPCR does not differentiate between viable and dead cells, potentially leading to an overestimation of the infective population in a sample. Such overestimation could result in unnecessary phytosanitary measures. The present study aims to develop a specific protocol ideally targeting to detection of only live Xap bacterial cells. To address this challenge, the viable quantitative PCR (v-qPCR) method was evaluated using three nucleic acid-binding dyes: propidium monoazide (PMA), a combination of PMA and ethidium monoazide (EMA), and PMAxx™, an improved version of PMA. PMAxx™ proved to be the most suitable dye for the detection and quantification of living bacterial cells. This methodology was also evaluated in infected plant material over time and can be considered a rapid and reliable alternative to PCR methods for detecting only those putative infective Xap that may pose a risk for Prunus crops. KEY POINTS: • Protocol to detect biofilm and planktonic viable X. arboricola pv. pruni cells. • Host validated protocol. • Benefits, reduction of chemicals in disease control.


Assuntos
Azidas , Doenças das Plantas , Propídio , Prunus , Reação em Cadeia da Polimerase em Tempo Real , Xanthomonas , Xanthomonas/genética , Xanthomonas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças das Plantas/microbiologia , Propídio/análogos & derivados , Propídio/química , Azidas/química , Prunus/microbiologia , Viabilidade Microbiana , Biofilmes/crescimento & desenvolvimento
2.
Phytopathology ; : PHYTO10230366IA, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264350

RESUMO

Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.

3.
Front Microbiol ; 15: 1405751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132141

RESUMO

Introduction: Citrus is one of the most important fruit crops worldwide, and the root-associated microbiota can have a profound impact on tree health and growth. Methods: In a collaborative effort, the International Citrus Microbiome Consortium investigated the global citrus root microbiota with samples collected from nine citrus-producing countries across six continents. We analyzed 16S rDNA and ITS2 amplicon sequencing data to identify predominant prokaryotic and fungal taxa in citrus root samples. Comparative analyses were conducted between root-associated microbial communities and those from the corresponding rhizosphere and bulk soil samples. Additionally, genotype-based group-wise comparisons were performed to assess the impact of citrus genotype on root microbiota composition. Results: Ten predominant prokaryotic phyla, containing nine bacterial phyla including Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes and one archaeal phylum (Thaumarchaeota), and multiple fungal phyla including Ascomycota and Basidiomycota were identified in the citrus root samples. Compared with the microbial communities from the corresponding rhizosphere and bulk soil samples from the same trees, the prokaryotic and fungal communities in the roots exhibited lower diversity and complexity but greater modularity compared to those in the rhizosphere. In total, 30 root-enriched and 150 root-depleted genera in bacterial community were identified, whereas 21 fungal genera were enriched, and 147 fungal genera were depleted in the root niche compared with the rhizosphere. The citrus genotype significantly affected the root prokaryotic and fungal communities. In addition, we have identified the core root prokaryotic genera comprising Acidibacter, Allorhizobium, Bradyrhizobium, Chitinophaga, Cupriavidus, Devosia, Dongia, Niastella, Pseudomonas, Sphingobium, Steroidobacter and Streptomyces, and the core fungal genera including Acrocalymma, Cladosporium, Fusarium, Gibberella, Mortierella, Neocosmospora and Volutella. The potential functions of these core genera of root microbiota were predicted. Conclusion: Overall, this study provides new insights into the assembly of microbial communities and identifies core members of citrus root microbiota across a wide geographic range. The findings offer valuable information for manipulating root microbiota to enhance plant growth and health.

4.
Microbiol Resour Announc ; 13(7): e0027324, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38860797

RESUMO

Here, we report the draft genome sequence of Xanthomonas arboricola pv. pruni strain PVCT 262.1, isolated from almond (Prunus dulcis) leaves affected by bacterial spots in Italy in 2020. Genome size is 5,076,418 bp and G+C content is 65.44%. A total of 4,096 protein-coding genes and 92 RNAs are predicted.

5.
Phytopathology ; 114(5): 837-842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38815216

RESUMO

Plant diseases significantly impact food security and food safety. It was estimated that food production needs to increase by 50% to feed the projected 9.3 billion people by 2050. Yet, plant pathogens and pests are documented to cause up to 40% yield losses in major crops, including maize, rice, and wheat, resulting in annual worldwide economic losses of approximately US$220 billion. Yield losses due to plant diseases and pests are estimated to be 21.5% (10.1 to 28.1%) in wheat, 30.3% (24.6 to 40.9%) in rice, and 22.6% (19.5 to 41.4%) in maize. In March 2023, The American Phytopathological Society (APS) conducted a survey to identify and rank key challenges in plant pathology in the next decade. Phytopathology subsequently invited papers that address those key challenges in plant pathology, and these were published as a special issue. The key challenges identified include climate change effect on the disease triangle and outbreaks, plant disease resistance mechanisms and its applications, and specific diseases including those caused by Candidatus Liberibacter spp. and Xylella fastidiosa. Additionally, disease detection, natural and man-made disasters, and plant disease control strategies were explored in issue articles. Finally, aspects of open access and how to publish articles to maximize the Findability, Accessibility, Interoperability, and Reuse of digital assets in plant pathology were described. Only by identifying the challenges and tracking progress in developing solutions for them will we be able to resolve the issues in plant pathology and ultimately ensure plant health, food security, and food safety.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Patologia Vegetal , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Resistência à Doença , Mudança Climática , Xylella
6.
Front Microbiol ; 14: 1185368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440880

RESUMO

Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes.

7.
EFSA J ; 20(12): e07641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474480

RESUMO

Following a request from the European Commission, the EFSA Panel on Plant Health performed a risk assessment of Xanthomonas citri pv. viticola (Xcv). This pest causes bacterial canker of grapevine and is reported from Brazil and India. Two scenarios were considered: scenario A0 (current practice) and A2 (additional control measures). For the fresh grape import pathway, scenario A0 results in an order of magnitude of about one entry per 10 years (median; 90% uncertainty interval between ca. one entry per 18,000 years and ca. five entries per year). For the Vitis spp. plants for planting for research/breeding purposes import pathway, the risk of entry is several orders of magnitude smaller than the risk due to fresh grape import. This outcome is also obtained under scenario A2. The key entry uncertainties include import volume and transfer (for plants for planting), transfer and the disaggregation factor (for fresh grapes) and the limited availability of epidemiological data. The extent of the area favourable for Xcv establishment in the EU is uncertain, illustrating the limitations of climate suitability assessments when based on few data points and little epidemiological information. Nevertheless, the risk of Xcv establishment is only slightly lower than the risk of Xcv entry, i.e. no major establishment constraints are expected for most entries. Similarly, the risk of Xcv establishment is assessed as only slightly lower under current climate compared to the climate of 2041-2060. For grapevine growing areas in the EU with average yearly temperature above 17°C, the lag phase between establishment and spread is expected to be about 3 years (median; 90% range between ca. 6 months and ca. 6 years). Under the same scenario, the rate of spread by natural means is assessed to be ca. 300 m/year (median; 90% range between ca. 35 and ca. 800 m/year). The spread rate would be considerably higher considering movements of plants and cutting tools or machinery. The percentage of grapevine plants infected by Xcv in production sites as yearly average over a 30-year production cycle is estimated to be ca. 17% (median; 90% range between ca. 1.5% and ca. 46%) in table grapes and ca. 12% (median; 90% range between ca. 0.7% and ca. 37%) in wine grapes. Impacts have been reported to be severe in Brazil and India, but the estimates provided here show that there is considerable uncertainty about expected impacts in the EU.

8.
Microorganisms ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35744622

RESUMO

'Candidatus Liberibacter solanacearum' (CaLsol) is an uncultured bacterium, transmitted by psyllids and associated with several diseases in Solanaceae and Apiaceae crops. CaLsol detection in psyllids often requires insect destruction, preventing a subsequent morphological identification. In this work, we have assessed the influence on the detection of CaLsol by PCR in Bactericera trigonica (Hemiptera: Psyllidae), of four specimen preparations (entire body, ground, cut-off head, and punctured abdomen) and seven DNA extraction methods (PBS suspension, squashing on membrane, CTAB, Chelex, TRIsureTM, HotSHOT, and DNeasy®). DNA yield and purity ratios, time consumption, cost, and residues generated were also evaluated. Optimum results were obtained through grinding, but it is suggested that destructive procedures are not essential in order to detect CaLsol. Although CaLsol was detected by qPCR with DNA obtained by the different procedures, HotSHOT was the most sensitive method. In terms of time consumption and cost, squashed on membrane, HotSHOT, and PBS were the fastest, while HotSHOT and PBS were the cheapest. In summary, HotSHOT was accurate, fast, simple, and sufficiently sensitive to detect this bacterium within the vector. Additionally, cross-contamination with CaLsol was assessed in the ethanol solutions where B. trigonica specimens were usually collected and preserved. CaLsol-free psyllids were CaLsol-positive after incubation with CaLsol-positive specimens. This work provides a valuable guide when choosing a method to detect CaLsol in vectors according to the purpose of the study.

10.
Microorganisms ; 10(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35630430

RESUMO

Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca) are causal agents of Citrus Bacterial Canker (CBC), a devastating disease that severely affects citrus plants. They are harmful organisms not reported in Europe or the Mediterranean Basin. Host plants are in the Rutaceae family, including the genera Citrus, Poncirus, and Fortunella, and their hybrids. In addition, other genera of ornamental interest are reported as susceptible, but results are not uniform and sometimes incongruent. We evaluated the susceptibility of 32 ornamental accessions of the Rutaceae family belonging to the genera Citrus, Fortunella, Atalantia, Clausena, Eremocitrus, Glycosmis, Microcitrus, Murraya, Casimiroa, Calodendrum, and Aegle, and three hybrids to seven strains of Xcc and Xca. Pathotyping evaluation was assessed by scoring the symptomatic reactions on detached leaves. High variability in symptoms and bacterial population was shown among the different strains in the different hosts, indicative of complex host-pathogen interactions. The results are mostly consistent with past findings, with the few discrepancies probably due to our more complete experimental approach using multiple strains of the pathogen and multiple hosts. Our work supports the need to regulate non-citrus Rutaceae plant introductions into areas, like the EU and Mediterranean, that are currently free of this economically important pathogen.

11.
Phytopathology ; 112(8): 1630-1639, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35196068

RESUMO

Xanthomonas arboricola comprises a number of economically important fruit tree pathogens classified within different pathovars. Dozens of nonpathogenic and taxonomically unvalidated strains are also designated as X. arboricola, leading to a complicated taxonomic status in the species. In this study, we have evaluated the whole-genome resources of all available Xanthomonas spp. strains designated as X. arboricola in the public databases to refine the members of the species based on DNA similarity indexes and core genome-based phylogeny. Our results show that, of the nine validly described pathovars within X. arboricola, pathotype strains of seven pathovars are taxonomically genuine, belonging to the core clade of the species regardless of their pathogenicity on the host of isolation (thus the validity of pathovar status). However, strains of X. arboricola pv. guizotiae and X. arboricola pv. populi do not belong to X. arboricola because of the low DNA similarities between the type strain of the species and the pathotype strains of these two pathovars. Thus, we propose to elevate the two pathovars to the rank of a species as X. guizotiae sp. nov. with the type strain CFBP 7408T and X. populina sp. nov. with the type strain CFBP 3123T. In addition, other mislabeled strains of X. arboricola were scattered within Xanthomonas spp. that belong to previously described species or represent novel species that await formal description.


Assuntos
Doenças das Plantas , Xanthomonas , Frutas , Filogenia
13.
Microorganisms ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36677335

RESUMO

Xanthomonas citri pv. citri (Xcc) (X. citri subsp. citri) type A is the causal agent of citrus bacterial canker (CBC) on most Citrus spp. and close relatives. Two narrow-host-range strains of Xcc, Aw and A*, from Florida and Southwest Asia, respectively, infect only Mexican lime (Citrus aurantifolia) and alemow (C. macrophylla). In the initial stage of infection, these xanthomonads enter via stomata to reach the apoplast. Herein, we investigated the differences in chemotactic responses for wide and narrow-host-range strains of Xcc A, X. euvesicatoria pv. citrumelonis (X. alfalfae subsp. citrumelonis), the causal agent of citrus bacterial spot, and X. campestris pv. campestris, the crucifer black rot pathogen. These strains of Xanthomonas were compared for carbon source use, the chemotactic responses toward carbon compounds, chemotaxis sensor content, and responses to apoplastic fluids from Citrus spp. and Chinese cabbage (Brassica pekinensis). Different chemotactic responses occurred for carbon sources and apoplastic fluids, depending on the Xanthomonas strain and the host plant from which the apoplastic fluid was derived. Differential chemotactic responses to carbon sources and citrus apoplasts suggest that these Xanthomonas strains sense host-specific signals that facilitate their location and entry of stomatal openings or wounds.

14.
Sensors (Basel) ; 21(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066492

RESUMO

Attentional biomarkers in attention deficit hyperactivity disorder are difficult to detect using only behavioural testing. We explored whether attention measured by a low-cost EEG system might be helpful to detect a possible disorder at its earliest stages. The GokEvolution application was designed to train attention and to provide a measure to identify attentional problems in children early on. Attention changes registered with NeuroSky MindWave in combination with the CARAS-R psychological test were used to characterise the attentional profiles of 52 non-ADHD and 23 ADHD children aged 7 to 12 years old. The analyses revealed that the GokEvolution was valuable in measuring attention through its use of EEG-BCI technology. The ADHD group showed lower levels of attention and more variability in brain attentional responses when compared to the control group. The application was able to map the low attention profiles of the ADHD group when compared to the control group and could distinguish between participants who completed the task and those who did not. Therefore, this system could potentially be used in clinical settings as a screening tool for early detection of attentional traits in order to prevent their development.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Interfaces Cérebro-Computador , Jogos de Vídeo , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo , Criança , Humanos
15.
Microorganisms ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923763

RESUMO

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.

16.
Microorganisms ; 8(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967215

RESUMO

Liberibacter is a bacterial group causing different diseases and disorders in plants. Among liberibacters, Candidatus Liberibacter solanaceraum (CLso) produces disorders in several species mainly within Apiaceae and Solanaceae families. CLso isolates are usually grouped in defined haplotypes according to single nucleotide polymorphisms in genes associated with ribosomal elements. In order to characterize more precisely isolates of CLso identified in potato in Spain, a Multilocus Sequence Analysis (MLSA) was applied. This methodology was validated by a complete analysis of ten housekeeping genes that showed an absence of positive selection and a nearly neutral mechanism for their evolution. Most of the analysis performed with single housekeeping genes, as well as MLSA, grouped together isolates of CLso detected in potato crops in Spain within the haplotype E, undistinguishable from those infecting carrots, parsnips or celery. Moreover, the information from these housekeeping genes was used to estimate the evolutionary divergence among the different CLso by using the concatenated sequences of the genes assayed. Data obtained on the divergence among CLso haplotypes support the hypothesis of evolutionary events connected with different hosts, in different geographic areas, and possibly associated with different vectors. Our results demonstrate the absence in Spain of CLso isolates molecularly classified as haplotypes A and B, traditionally considered causal agents of zebra chip in potato, as well as the uncertain possibility of the present haplotype to produce major disease outbreaks in potato that may depend on many factors that should be further evaluated in future works.

17.
PLoS One ; 14(7): e0219797, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318915

RESUMO

Comparative studies in Xanthomonas have provided a vast amount of data that enabled to deepen in the knowledge of those factors associated with virulence and Xanthomonas plant interaction. The species of this genus present a wide range of host plants and a large number of studies have been focused to elucidate which mechanism are involved in this characteristic. In this study, comparative genomic and phenotypic analysis were performed between X. citri subsp. citri (Xcc), one of the most studied pathogens within Xanthomonas, and X. arboricola pv. pruni (Xap), a pathogen which has aroused great interest in recent time. The work was aimed to find those elements that contribute to their host divergence despite the convergence in the symptoms that each species cause on Citrus spp. and Prunus spp., respectively. This study reveals a set of genes that could be putatively associated with the adaptation of these pathogens to their hosts, being the most remarkable those involved in environmental sensing systems such as the case of the TonB-dependent transporters, the sensors of the two-component system and the methyl accepting chemotaxis proteins. Other important variants were found in processes related to the decomposition of the cell wall as could be appreciated by their dissimilar set of cell-wall degrading enzymes. Type three effectors, as one of the most important factors in delineating the host specificity in Xanthomonas, also showed a different array when comparing both species, being some of them unique to each pathogen. On the other hand, only small variations could be connected to other features such as the motility appendages and surface adhesion proteins, but these differences were accompanied by a dissimilar capacity to attach on host and non-host leaf surface. The molecular factors found in this work provide the basis to perform a more in-depth functional analyses that unveil those actual factors associated with pathogenesis and host specificity in Xcc and Xap.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Proteínas de Bactérias/genética , Sequência de Bases , Biofilmes , Genoma Bacteriano , Genômica , Viabilidade Microbiana , Família Multigênica , Filogenia , Virulência/genética , Xanthomonas/genética , Xanthomonas/ultraestrutura
18.
Nat Commun ; 9(1): 4894, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459421

RESUMO

Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.


Assuntos
Citrus/microbiologia , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Metagenoma/genética , Metagenômica/classificação , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética
19.
Int J Syst Evol Microbiol ; 68(6): 1857-1866, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29741474

RESUMO

Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).


Assuntos
Filogenia , Doenças das Plantas/microbiologia , Prunus persica/microbiologia , Xanthomonas/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Frutas/microbiologia , Tipagem de Sequências Multilocus , Pigmentação , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Árvores , Xanthomonas/isolamento & purificação , Xanthomonas/patogenicidade
20.
Mol Plant Pathol ; 19(9): 2053-2065, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29575564

RESUMO

BACKGROUND: Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of stone fruits and almond, an important disease that may reduce the yield and vigour of the trees, as well as the marketability of affected fruits. Xap lies within the Xanthomonas genus, which has been intensively studied because of its strain specialization and host range complexity. Here, we summarize the recent advances in our understanding of the complexities of Xap, including studies of the molecular features that result after comparative phenotypic and genomic analyses, in order to obtain a clearer overview of the bacterial behaviour and infection mechanism in the context of the X. arboricola species. TAXONOMIC STATUS: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. arboricola; Pathovar pruni. HOST RANGE AND SYMPTOMS: Xap infects most Prunus species, including apricot, peach, nectarine, plum and almond, and occasionally cherry. Symptoms are found on leaves, fruits, twigs and branches or trunks. In severe infections, defoliation and fruit dropping may occur. DISTRIBUTION: Bacterial spot of stone fruits and almond is worldwide in distribution, with Xap being isolated in Africa, North and South America, Asia, Europe and Oceania. It is a common disease in geographical areas in which stone fruits and almonds are grown. Xap is listed as a quarantine organism in several areas of the world. GENOME: The genomes of six isolates from Xap have been publicly released. The genome consists of a single chromosome of around 5 000 000 bp with 65 mol% GC content and an extrachromosomal plasmid element of around 41 000 bp with 62 mol% GC content. Genomic comparative studies in X. arboricola have allowed the identification of putative virulence components associated with the infection process of bacterial spot of stone fruits and almond. DISEASE CONTROL: Management of bacterial spot of stone fruits and almond is based on an integrated approach that comprises essential measures to avoid Xap introduction in a production zone, as well as the use of tolerant or resistant plant material and chemical treatments, mainly based on copper compounds. Management programmes also include the use of appropriate cultivation practices when the disease is already established. Finally, for the effective control of the disease, appropriate detection and characterization methods are needed for use in symptomatic or asymptomatic samples as a first approach for pathogen exclusion. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPR; http://www.cost.eu/COST_Actions/ca/CA16107; http://www.xanthomonas.org.


Assuntos
Frutas/microbiologia , Genoma Bacteriano/genética , Prunus dulcis/microbiologia , Xanthomonas/patogenicidade , Xanthomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA