Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Radiol Prot ; 41(4)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33827064

RESUMO

The 2013/59/Euratom Directive reduced the occupational exposure limits for the lens. Since it has become crucial to estimate the dose absorbed by the lens, we have studied the individual variability of exposed workers' ocular conformations with respect to the data estimated from their personal dosimetry. The anterior eye conformations of 45 exposed workers were acquired using Scheimpflug imaging and classified according to their sight conditions (emmetropia, myopia or hypermetropia). Three eye models were computed, with two lens reconstructions, and implemented in an interventional radiology scenario using Monte Carlo code. The models were dosimetrically analysed by simulating setup A, a theoretical monoenergetic and isotropic photon source (10-150 keV) and setup B, a more realistic interventional setting with an angiographic x-ray unit (50, 75, 100 kV peak). Scheimpflug imaging provided an average anterior chamber depth of (6.4 ± 0.5) mm and a lens depth of (3.9 ± 0.3) mm, together with a reconstructed equatorial lens length of (7.1-10.1) mm. Using these data for model reconstruction, dose coefficients (DCs) were simulated for all ocular structures. Regardless of the eye model used, the DCs showed a similar trend with radiation energy, which highlighted that for the same energy and setup, no significant dependence on ocular morphology and workers' visual conditions was observed. The maximum difference obtained did not exceed 1% for all eye models or structures analysed. Therefore, the individual variabilities of worker ocular anatomy do not require any additional correction, compared to the personal dosimetry data measured with a dedicated lens dosimeter. To estimate the dose absorbed by the other eye structures, it is, instead, essential to know the spectrum of the source that has generated the irradiation, since there are differences between monoenergetic sources and more realistic angiographic units.


Assuntos
Cristalino , Exposição Ocupacional , Humanos , Método de Monte Carlo , Exposição Ocupacional/análise , Doses de Radiação , Dosímetros de Radiação , Radiologia Intervencionista
2.
Sci Rep ; 10(1): 21693, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303795

RESUMO

The current framework of radiological protection of occupational exposed medical workers reduced the eye-lens equivalent dose limit from 150 to 20 mSv per year requiring an accurate dosimetric evaluation and an increase understanding of radiation induced effects on Lens cells considering the typical scenario of occupational exposed medical operators. Indeed, it is widely accepted that genomic damage of Lens epithelial cells (LEC) is a key mechanism of cataractogenesis. However, the relationship between apoptosis and cataractogenesis is still controversial. In this study biological and physical data are combined to improve the understanding of radiation induced effects on LEC. To characterize the occupational exposure of medical workers during angiographic procedures an INNOVA 4100 (General Electric Healthcare) equipment was used (scenario A). Additional experiments were conducted using a research tube (scenario B). For both scenarios, the frequencies of binucleated cells, micronuclei, p21-positive cells were assessed with different doses and dose rates. A Monte-Carlo study was conducted using a model for the photon generation with the X-ray tubes and with the Petri dishes considering the two different scenarios (A and B) to reproduce the experimental conditions and validate the irradiation setups to the cells. The simulation results have been tallied using the Monte Carlo code MCNP6. The spectral characteristics of the different X-ray beams have been estimated. All irradiated samples showed frequencies of micronuclei and p21-positive cells higher than the unirradiated controls. Differences in frequencies increased with the delivered dose measured with Gafchromic films XR-RV3. The spectrum incident on eye lens and Petri, as estimated with MCNP6, was in good agreement in the scenario A (confirming the experimental setup), while the mean energy spectrum was higher in the scenario B. Nevertheless, the response of LEC seemed mainly related to the measured absorbed dose. No effects on viability were detected. Our results support the hypothesis that apoptosis is not responsible for cataract induced by low doses of X-ray (i.e. 25 mGy) while the induction of transient p21 may interfere with the disassembly of the nuclear envelop in differentiating LEC, leading to cataract formation. Further studies are needed to better clarify the relationship we suggested between DNA damage, transient p21 induction and the inability of LEC enucleation.


Assuntos
Catarata/etiologia , Dano ao DNA/efeitos da radiação , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Cristalino/citologia , Cristalino/efeitos da radiação , Exposição Ocupacional/efeitos adversos , Doses de Radiação , Raios X/efeitos adversos , Células Cultivadas , Humanos , Método de Monte Carlo
3.
PLoS One ; 13(6): e0199312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29958291

RESUMO

Radiation therapy is a useful and standard tumor treatment strategy. Despite recent advances in delivery of ionizing radiation, survival rates for some cancer patients are still low because of recurrence and radioresistance. This is why many novel approaches have been explored to improve radiotherapy outcome. Some strategies are focused on enhancement of accuracy in ionizing radiation delivery and on the generation of greater radiation beams, for example with a higher dose rate. In the present study we proposed an in vitro research of the biological effects of very high dose rate beam on SK-Mel28 and A375, two radioresistant human melanoma cell lines. The beam was delivered by a pulsed plasma device, a "Mather type" Plasma Focus for medical applications. We hypothesized that this pulsed X-rays generator is significantly more effective to impair melanoma cells survival compared to conventional X-ray tube. Very high dose rate treatments were able to reduce clonogenic efficiency of SK-Mel28 and A375 more than the X-ray tube and to induce a greater, less easy-to-repair DNA double-strand breaks. Very little is known about biological consequences of such dose rate. Our characterization is preliminary but is the first step toward future clinical considerations.


Assuntos
Melanoma/radioterapia , Tolerância a Radiação/efeitos da radiação , Radioterapia/métodos , Linhagem Celular Tumoral , Humanos , Doses de Radiação , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA