Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 12(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38786406

RESUMO

This study investigated the effect of verbal encouragement (VE) on static and dynamic balance in individuals with intellectual disabilities (IDs). A total of 13 mild IDs and 12 moderate IDs participants underwent static balance tests (bipedal stance on firm surface, under open eyes (OEs) and closed eyes (CEs), and foam surface, unipedal stance on firm surface) and dynamic balance assessments (Y Balance Test (YBT) and Expanded Timed Up-and-Go Test (ETUGT)) under VE and no VE (NO/VE) conditions. VE significantly reduced center of pressure mean velocity (CoPVm) values for mild IDs in firm bipedal CEs conditions. The mild IDs group exhibited improved YBT scores and enhanced ETUGT performances for both groups under VE. Incorporating VE as a motivational strategy in balance training interventions can positively impact static and dynamic balance in individuals with mild IDs, especially in challenging conditions like unipedal stances on firm surfaces.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34574408

RESUMO

Altitude training increases haemoglobin, erythropoietin values among athletes, but may have negative physiological consequences. An alternative, although less explored, that has the potential to positively influence performance while avoiding some of the negative physiological consequences of hypoxia is sand training. Ten endurance-trained athletes (age: 20.8 ± 1.4, body mass: 57.7 ± 8.2 kg, stature: 176 ± 6 cm; 5000 m 14:55.00 ± 0:30 min) performed three 21-day training camps at different locations: at a high altitude (HIGH), at the sea-level (CTRL), at the sea-level on the sand (SAND). Differences in erythropoietin (EPO) and haemoglobin (Hb) concentration, body weight, VO2max and maximal aerobic velocity (VMA) before and after each training cycle were compared. Data analysis has indicated that training during HIGH elicited a greater increase in VO2max (2.4 ± 0.2%; p = 0.005 and 1.0 ± 0.2%; p < 0.001) and VMA (2.4 ± 0.2%, p < 0.001 and 1.2 ± 0.2%; p = 0.001) compared with CTRL and SAND. While increases in VO2max and VMA following SAND were greater (1.3 ± 0.1%; p < 0.001 and 1.2 ± 0.1%; p < 0.001) than those observed after CTRL. Moreover, EPO increased to a greater extent following HIGH (25.3 ± 2.7%) compared with SAND (11.7 ± 1.6%, p = 0.008) and CTRL (0.1 ± 0.3%, p < 0.001) with a greater increase (p < 0.01) following SAND compared with CTRL. Furthermore, HIGH and SAND elicited a greater increase (4.9 ± 0.9%; p = 0.001 and 3.3 ± 1.1%; p = 0.035) in Hb compared with CTRL. There was no difference in Hb changes observed between HIGH and SAND (p = 1.0). Finally, athletes lost 2.1 ± 0.4% (p = 0.001) more weight following HIGH vs. CTRL, while there were no differences in weight changes between HIGH vs. SAND (p = 0.742) and SAND vs. CTRL (p = 0.719). High-altitude training and sea-level training on sand resulted in significant improvements in EPO, Hb, VMA, and VO2max that exceeded changes in such parameters following traditional sea-level training. While high-altitude training elicited greater relative increases in EPO, VMA, and VO2max, sand training resulted in comparable increases in Hb and may prevent hypoxia-induced weight loss.


Assuntos
Eritropoetina , Corrida , Adulto , Altitude , Hemoglobinas/metabolismo , Humanos , Hipóxia , Consumo de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA