RESUMO
Four experiments were performed to assess the effect of different orientations and direction of lighting on the visual processing of shaded or bipartite disks. In the first two experiments, observers were presented with nine different shading orientations from 0 degree to 180 degrees. Targets were detected in a rapid and parallel fashion for shaded disks when the orientation of the shading gradient was not horizontal (90 degrees) or oriented at 67.5 degrees. Search asymmetries favoring the detection of "pock" targets over "ball" targets were found for all orientations. The search rates for bipartite disks were similar to the shaded disks at 0 degree, 22.5 degrees, and 90 degrees but not for intermediate orientations, and no search asymmetries were found. These differences suggest that shaded displays and bipartite displays are processed by different underlying mechanisms. The third experiment showed that the direction of the light source (left or right) had no influence on search asymmetries around the 90 degrees point. Shading gradient orientation affected magnitude estimates of depth in the fourth experiment. These experiments show that the visual system's "assumption" of overhead lighting is broadly tuned.