RESUMO
Piglet weaning is an important stage in production where changes in the environment and diet can cause problems such as intestinal inflammation and diarrhea. Vitamin A is an essential nutrient for human and animal growth and has immunomodulatory and inflammatory effects. A large body of literature has previously reported on the use of vitamin A in piglet production, so our experiment added different concentrations of vitamin A (0, 1100, 2200, 4400, 8800, and 17,600 IU/kg) to weaned piglet diets to study the effects of different doses on growth performance, intestinal barrier, inflammation, and flora in weaned piglets. We selected 4400 IU/kg as the optimum concentration of vitamin A in relation to average daily weight gain, feed intake, feed-to-weight ratio, and diarrhea rate, and subsequently tested the inflammatory factors, immunoglobulin content, antioxidant levels, and intestinal flora of weaned piglets. Results: We observed that the diarrhea rate of weaned piglets was significantly lower after the addition of 4400 IU/kg of vitamin A to the diet (p < 0.05). A control group and a 4400 IU/kg VA group were selected for subsequent experiments. We found that after the addition of vitamin A, the serum CAT level of weaned piglets increased significantly, the expression of Claudin-1 in the jejunum and ileum increased significantly, the expression of Occludin gene in the jejunum increased significantly, the expression of IL-5 and IL-10 in the ileum increased significantly (p < 0.05), and the expression of IL-4, IL-5, and IL-10 in the ileum increased significantly (p < 0.05). Meanwhile, in the colonic flora of vitamin A-added weaned piglets, the relative abundance of Actinobacteria and Erysipelotrichales decreased significantly, while the relative abundance of Bacteroidales increased significantly (p < 0.05). The results of this study indicated that vitamin A at 4400 IU/kg reduces diarrhea in weaned piglets by increasing antioxidant levels, increasing intestinal tight junction protein gene expression, and regulating colonic gut microbiota.
RESUMO
Introduction: More effective and environment-friendly organic trace minerals have great potential to replace the inorganic elements in the diets of livestock. This study aimed to investigate the effects of dietary replacement of 100% inorganic trace minerals (ITMs) with 30-60% organic trace minerals (OTMs) on the performance, meat quality, antioxidant capacity, nutrient digestibility, and fecal mineral excretion and to assess whether low-dose OTMs could replace whole ITMs in growing-finishing pigs' diets. Methods: A total of 72 growing-finishing pigs (Duroc × Landrace × Yorkshire) with an initial average body weight of 74.25 ± 0.41 kg were selected and divided into four groups with six replicates per group and three pigs per replicate. The pigs were fed either a corn-soybean meal basal diet containing commercial levels of 100% ITMs or a basal diet with 30, 45, or 60% amino acid-chelated trace minerals instead of 100% ITMs, respectively. The trial ended when the pigs' weight reached ~110 kg. Results: The results showed that replacing 100% ITMs with 30-60% OTMs had no adverse effect on average daily gain, average daily feed intake, feed/gain, carcass traits, or meat quality (P > 0.05) but significantly increased serum transferrin and calcium contents (P < 0.05). Meanwhile, replacing 100% ITMs with OTMs tended to increase serum T-SOD activity (0.05 ≤ P < 0.1), and 30% OTMs significantly increased muscle Mn-SOD activity (P < 0.05). Moreover, replacing 100% ITMs with OTMs tended to increase the apparent digestibility of energy, dry matter, and crude protein (0.05 ≤ P < 0.1) while significantly reducing the contents of copper, zinc, and manganese in feces (P < 0.05). Discussion: In conclusion, dietary supplementation with 30-60% OTMs has the potential to replace 100% ITMs for improving antioxidant capacity and nutrient digestibility and for reducing fecal mineral excretion without compromising the performance of growing-finishing pigs.
RESUMO
The purpose of this study was to evaluate the effects of different levels of potassium magnesium sulfateon (PMS) on growth performance, diarrhea rate, intestinal morphology, antioxidant capacity, intestinal immunity, and gut microbiota in weaned piglets. A total of 216 weaned piglets were randomly divided into six dietary groups: the basal diet with 0% (CON), 0.15, 0.3, 0.45, 0.6, and 0.75% PMS. The results showed that the ADFI of 29-42 days and 1-42 days was linearly and quadratically increased by the PMS supplementation (P < 0.05), and significantly reduced the diarrhea rate in weaned piglets (P < 0.05). Moreover, dietary supplementation with PMS significantly reduced the serum adrenaline and noradrenaline levels in weaned piglets (P < 0.05). Furthermore, 0.3% PMS significantly increased the activity of glutathione peroxidase (GSH-Px) in the jejunum (P < 0.05) and tended to increase the activity of superoxide dismutase (SOD) in the jejunal mucosa of piglets (P < 0.1). Additionally, dietary supplementation with PMS significantly reduced the interleukin-1ß (IL-1ß) level in the jejunal mucosa (P < 0.05), and 0.3% PMS increased the serum IgM content in piglets (P < 0.05). Furthermore, the analysis of colonic microbiota by 16S RNA sequencing showed that the addition of PMS increased the Shannon index (P < 0.05) and Observed Species index (P < 0.05). Based on linear discriminant analysis effect size (LEfSe) and T-test analysis, the addition of PMS increased the relative abundance of Ruminococcaceae and Peptostreptococcaceae in the colonic digesta (P < 0.05). Spearman analysis showed that there was a positive correlation between intestinal GSH-Px activity and the relative abundance of Peptostreptococcaceae. These results showed that dietary supplementation with PMS could improve growth performance, alleviate diarrhea incidence, and modulate the antioxidant capacity and intestinal immunity in weaned piglets, which was partially related to the significant changes in colonic microbiota composition.
RESUMO
Classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) are economically important swine viruses that cause reproductive failure and/or respiratory symptoms in pigs. However, the co-infection status of these viruses in Chinese swine herds is not well clarified. In this study, we evaluated the co-infection of these four viruses in 159 pigs collected from 63 herds in eight regions of China from 2016 to 2018. CSFV, PRRSV, PCV2 and PCV3 were detected in 14, 56, 43 and 4 of the pigs, respectively. The percentage of singular infections was 32.71%, while the percentages of dual infections and multiple infections were 15.72% and 3.15%, respectively. The E2 of CSFV, ORF5 of PRRSV, ORF2s of PCV2 and PCV3 from all positive samples were determined and used for phylogenetic analyses. E2-based phylogenetic tree showed that all 14 CSFVs identified in this study belong to 2.1b subtype. ORF5-based phylogenetic tree showed that PRRSV2 is predominant in China while PRRSV1 can also be detected. In addition, 35, 16, 4 and 1 of our PRRSVs are clustered with highly pathogenic PRRSV2, NADC30-like PRRSV2, classical PRRSV2 and PRRSV1, respectively. ORF2-based phylogenetic trees showed that our PCVs are grouped with 2 PCV2 subtypes (PCV2d and PCV2b) and 3 PCV3 subtypes (PCV3a, PCV3b and PCV3c), respectively. Our results provide the latest co-infection status and the diversity of four important swine viruses in Chinese swine herds, which is beneficial for understanding the epidemiology of these viruses.