Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(42): 47765-47774, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251743

RESUMO

High quality of hydrogen is the key to the long lifetime of proton-exchange membrane fuel cell (PEMFC) vehicles, while trace H2S impurities in hydrogen significantly affect their durability and fuel expense. Herein, we demonstrate a robust PtRu alloy catalyst with an intriguing H2S tolerance as the PEMFC anode, showing a stronger antipoisoning capability toward hydrogen oxidation reaction compared with the Pt/C anode. The PtRu/C-based single PEMFC shows approximately 14.3% loss of cell voltage after 3 h operation with 1 ppm of H2S in hydrogen, significantly lower than that of Pt/C-based PEMFCs (65%). By adopting PtRu/C as the anode, the H2S limit in hydrogen can be increased to 1.7 times that of the Pt/C anode, assuming that the PEMFC runs for 5000 h, which is conductive for the cost reduction of hydrogen purification. The three-electrode electrochemical test indicates that PtRu/C exhibits a slower adsorption kinetics toward S2- species with poisoning rates of 0.02782, 0.02982, and 0.03682 min-1 at temperatures of 25, 35, and 45 °C, respectively, all lower than those of Pt/C. X-ray absorption fine structure spectra indicate the weakened Pt-S binding for PtRu/C in comparison to Pt/C with a longer Pt-S bond length. Density functional theory calculation analyses reveal that adsorption energy of sulfur on the Pt surface was reduced for PtRu/C, showing 1-10% decrease at different Pt sites for (111), (110), and (100) planes, which is ascribed to the downshifted Pt d-band center caused by the ligand and strain effects due to the introduction of second metallic Ru. This work provides a valuable guide for the development of the H2S-tolerant catalysts for long-term application of PEMFCs.

2.
Nanoscale ; 14(27): 9849-9859, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35772340

RESUMO

Exploring cost-effective non-precious metal electrocatalysts is vital for the large-scale application of clean energy conversion devices (i.e., fuel cells, metal-air batteries and water electrolysers). Herein, we present the construction of a three-dimensional cobalt sulfide/multi-heteroatom co-doped carbon composite as a trifunctional electrocatalyst for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) through one-step sulfidation of zeolitic-imidazolate frameworks (ZIFs) using sulfur powder as a sulfur source. By virtue of the distinct periodic metal-nitrogen coordination structure and the abundant micropores within the ZIF precursor, sub-10 nm Co9S8 nanoparticles (NPs) are homogenously anchored on a Co, S and N multi-heteroatom co-doped carbon framework with a large specific surface area that exposes sufficient reactive sites for these electrocatalytic reactions. The optimized Co9S8/CoNSC exhibits outstanding ORR, OER and HER performance, comparable or even superior to those of commercial Pt/C and RuO2. The small Co9S8 NPs and Co-Nx species embedded in the carbon matrix cooperatively catalyze the OER and ORR, while the HER catalysis is mainly contributed by Co9S8 NPs. Furthermore, the Co9S8/CoNSC shows outstanding anti-poisoning capability towards sulfur species during ORR catalysis with no obvious activity degradation observed in 0.1 M KOH containing 50 µM SO32- species, significantly outperforming commercial Pt/C. The assembled rechargeable Zn-air battery using the Co9S8/CoNSC as a cathode shows a high power density (150 mW cm-2) and the assembled water electrolyzer only requires 1.585 V at a current density of 10 mA cm-2 when using this material as an anode and a cathode. This work provides an effective strategy to design and synthesize efficient, durable and anti-poisoning cobalt chalcogenide-based trifunctional electrocatalysts for the large-scale application of clean energy conversion devices.

3.
ACS Appl Mater Interfaces ; 14(6): 7768-7778, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35104117

RESUMO

Renewable power-derived green hydrogen distributed via natural gas networks is considered one of the viable routes to drive the decarbonization of transportation and distributed power generation, while a trace amount of sulfur impurities is one of the key factors that affect the durability and life cycle expense of proton-exchange membrane fuel cells (PEMFCs) for end users. Herein, we explore the underlying effect of sulfur resistance for Pt-based hydrogen oxidation reaction (HOR) electrocatalysts devoted to high-performance and durable PEMFCs. Two typical electrocatalysts, Pt/C with pure Pt nanoparticles (NPs) and PtCo/C with Pt3Co-alloy-core-Pt-skin NPs, were investigated to demonstrate the structure-property relation for Pt-based electrocatalysts. It was revealed that the PtCo/C demonstrated alleviated sulfur poisoning with the adsorption rate constant reduced by 21.7% compared with Pt/C, and the desorption of the adsorbed sulfur was also more favorable with Pt-S bond decomposition temperature lowered by approximately 25 °C. Characterization indicated that sulfur was predominantly adsorbed in the edge mode for PtCo/C, but in a comparable edge and bridge mode for Pt/C, which caused the strengthened Pt-S binding by the chelation effect for Pt/C. The lowered d-band center of surface Pt for PtCo/C, tuned by electron transfer from Co to Pt and Pt lattice strain, was also found responsible for the weakened Pt-S interaction. The recovery test based on electro-oxidation suggested that PtCo/C also outperformed Pt/C with faster and more thorough release of HOR active sites. The SO42- species derived from electro-oxidation of S2- was more apt to adsorb on Pt/C than PtCo/C because of its stronger affinity to SO42- caused by the higher d-band center of Pt. Therefore, it is clarified that adequate modification of the Pt d-band center, for example, negatively tuned for the state-of-the-art Pt/C, is crucial to improve the sulfur resistance and recovery capability for Pt-based electrocatalysts while reserving comparable HOR activity. In particular, the investigated PtCo/C electrocatalyst is a better choice over Pt/C for more durable PEMFC anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA