Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Vet Microbiol ; 298: 110242, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39243669

RESUMO

The H9N2 subtype of the avian influenza virus (AIV) poses a significant threat to the poultry industry and human health. Recombinant vaccines are the preferred method of controlling H9N2 AIV, and Marek's disease virus (MDV) is the ideal vector for recombinant vaccines. During this study, we constructed two recombinant MDV type 1 strains that carry the hemagglutinin (HA) gene of AIV to provide dual protection against both AIV and MDV. To assess the effects of different MDV insertion sites on the protective efficacy of H9N2 AIV, the HA gene of H9N2 AIV was inserted in UL41 and US2 of the MDV type 1 vector backbone to obtain recombinant viruses rMDV-UL41/HA and rMDV-US2/HA, respectively. An indirect immunofluorescence assay showed sustained expression of HA protein in both recombinant viruses. Additionally, the insertion of the HA gene in UL41 and US2 did not affect MDV replication in cell cultures. After immunization of specific pathogen-free chickens, although both the rMDV-UL41/HA and rMDV-US2/HA groups exhibited similar levels of hemagglutination inhibition antibody titers, only the rMDV-UL41/HA group provided complete protection against the H9N2 AIV challenge, and also offered complete protection against challenge with MDV. These results demonstrated that rMDV-UL41/HA could be used as a promising bivalent vaccine strain against both H9N2 avian influenza and Marek's disease in chickens.

2.
J Biol Chem ; : 107804, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307305

RESUMO

Avian leukosis virus subgroup J (ALV-J), a member of the genus Alpharetrovirus, possesses a small genome and exploits a vast array of host factors during its replication cycle. To identify host factors required for ALV-J replication and potentially guide the development of key therapeutic targets for ALV-J prevention, we employed a chicken genome-wide CRISPR/Cas9 knockout library to screen host factors involved in ALV-J infection within DF-1 cells. This screening revealed 42 host factors critical for ALV-J infection. Subsequent knockout assays showed that the absence of the genes encoding cycle-regulatory proteins, namely Cables1, CDK1, and DHFR, significantly inhibited ALV-J replication. Notably, Cables1 knockout cell lines displayed the most pronounced inhibitory effect. Conversely, overexpression assays confirmed that Cables1 significantly promotes ALV-J replication. Immunoprecipitation assays further indicated that Cables1 specifically interacts with the viral protein p15 (viral protease) among all ALV-J proteins, enhancing ALV-J p15 polyubiquitination. Additionally, we identified 26 lysine residues of ALV-J p15 as key sites for ubiquitination, and their replacement with arginine attenuated the replication ability of ALV-J in both in vitro and in vivo assays. This study demonstrates that Cables1 is a critical replication-dependent host factor of ALV-J by enhancing p15 ubiquitination and thereby promoting viral replication. Overall, these findings contribute to a deeper understanding of the ALJ-V replication mechanism and offer a potential target for the prevention and control of ALV-J infection.

3.
Front Vet Sci ; 11: 1461116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301286

RESUMO

Avian reoviruses (ARVs) cause viral arthritis or tenosynovitis, resulting in poor weight gain and increased feed conversion ratios in chickens. In this study, we generated three Marek's disease virus (MDV) recombinants, namely, rMDV-ARV-σB, rMDV-ARV-σC, and rMDV-ARV-σB + C, expressing ARV σB, σC, and both σB and σC, respectively. In rMDV-ARV-σB and rMDV-ARV-σC, the σB or σC gene was inserted into the US2 gene of MDV vaccine strain 814 using a fosmid-based rescue system. In rMDV-ARV-σB + C, the σB and σC genes were cloned into different expression cassettes, which were co-inserted into the US2 gene of the MDV 814 strain. In infected chicken embryo fibroblasts (CEFs), the recombinant virus rMDV-ARV-σB expressed σB, rMDV-ARV-σC expressed σC, and the rMDV-ARV-σB + C virus simultaneously expressed σB and σC. These recombinant viruses exhibited growth kinetics in CEFs similar to those of the parent MDV, and the inserted genes were stably maintained and expressed in the recombinant MDVs after 20 passages in cell cultures. These recombinant MDVs expressing σB and σC will provide potential vaccines against ARV infection in chickens.

4.
Vaccines (Basel) ; 12(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39340077

RESUMO

The chicken infectious anemia virus (CIAV) has been reported in major poultry-producing countries and poses a significant threat to the poultry industry worldwide. In this study, two Marek's disease virus (MDV) recombinants, rMDV-CIAV-1 and rMDV-CIAV-2, were generated by inserting the CIAV VP1 and VP2 genes into the MDV vaccine strain 814 at the US2 site using the fosmid-based rescue system. For rMDV-CIAV-1, an internal ribosome entry site was inserted between VP1 and VP2, so that both proteins were produced from a single open reading frame. In rMDV-CIAV-2, VP1 and VP2 were cloned into different open reading frames and inserted into the MDV genome. The recombinant viruses simultaneously expressed VP1 and VP2 in infected chicken embryo fibroblasts and exhibited growth kinetics similar to those of the parent MDV. The two recombinant viruses induced antibodies against CIAV in chickens. A single dose of the recombinant viruses provided strong protection against CIAV-induced anemia in chickens. These recombinant VP1- and VP2-expressing MDVs are potential vaccines against CIAV in chickens.

5.
Poult Sci ; 103(10): 104086, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098298

RESUMO

Probiotics are increasingly recognized for their capacity to combat pathogenic bacteria. In this study, we isolated a strain of Ligilactobacillus salivarius XP132 from the gut microbiota of healthy chickens. This strain exhibited resistance to low pH and bile salts, auto-aggregation capabilities, and the ability to co-aggregate with pathogenic Salmonella. The in vitro antibacterial activity of Ligilactobacillus salivarius XP132 was tested using an Oxford cup antibacterial test, and the results showed that Ligilactobacillus salivarius XP132 exhibited broad-spectrum antibacterial activity, with especially strong antibacterial activity against Salmonella. In animal experiments with white feather broilers and specific-pathogens-free (SPF) chickens, we orally administered 1 × 109 CFU XP132 live bacteria per chicken per day, and detected the content of Salmonella in the liver, spleen, intestinal contents, and eggs of the chickens by RT-qPCR. Oral administration of Lactobacillus salivarius XP132 group significantly reduced the levels of Salmonella in chicken liver, spleen, intestinal contents and eggs, and the oral administration of Ligilactobacillus salivarius XP132 significantly inhibited the horizontal and vertical transmission of Salmonella in SPF chickens and white-feathered broilers. After oral administration of XP132, the production of chicken serum anti-infective cytokine IFN-γ was also significantly up-regulated, thereby enhancing the host's ability to resist infection. In addition, the production of various serum inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α, was down-regulated, leading to significant amelioration of the inflammatory response induced by S. Pullorum in chickens. These findings suggest that Ligilactobacillus salivarius XP132 possesses potent antibacterial and immunomodulatory properties that effectively prevent both horizontal and vertical transmission of Salmonella Pullorum, highlighting its potential as a valuable tool for the prevention and control of Salmonella disease.


Assuntos
Galinhas , Ligilactobacillus salivarius , Doenças das Aves Domésticas , Probióticos , Salmonelose Animal , Animais , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonelose Animal/microbiologia , Salmonelose Animal/imunologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Ligilactobacillus salivarius/fisiologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/veterinária , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Salmonella/fisiologia , Organismos Livres de Patógenos Específicos , Salmonella enterica
6.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063745

RESUMO

As an important part of die steels, hot-work die steels are mainly used to manufacture molds made of solid metal or high-temperature liquid metal from heating to recrystallization temperature. In view of the requirements for mechanical properties and service life for hot-work die steel, it is conducive to improve the thermal fatigue resistance, wear resistance, and oxidation resistance of hot work die steel. In this review, the main failure modes of hot-work die steel were analyzed. Four traditional methods of strengthening and toughening die steel were summarized, including optimizing alloying elements, electroslag remelting, increasing the forging ratio, and heat treatment process enhancement. A new nano-strengthening method was introduced that aimed to refine the microstructure of hot-work abrasive steel and improve its service performance by adding nanoparticles into molten steel to achieve uniform dispersion. This review provides an overview to improve the service performance and service life of hot work die steel.

7.
Adv Sci (Weinh) ; 11(29): e2402005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816929

RESUMO

The application of portable aluminum-air batteries (AABs) in extreme environments is an inevitable demand for future development. Aqueous electrolyte freezing is a major challenge for low-temperature operations. Conventionally, enlightened by the organic system in metal ion batteries, blindly increasing the concentration is regarded as an efficient technique to reduce the freezing point (FP). However, the underlying contradiction between the adjusting mechanism of the FP and OH- transportation is ignored. Herein, the aqueous alkali solution of CsOH is researched as a prototype to disclose the intrinsic conductive behavior and related solvent structure evolution. Different from these inorganic electrolyte systems, the concept of a critical anti-freezing concentration (CFC) is proposed based on a specific temperature. The relationship between hydrogen bond reconstruction and de-solvation behavior is analyzed. A high conductivity is obtained at -30 °C, which is also a recorded value in an intrinsic aqueous AAB. The homogenous dissolution of the Al anode is also observed. As a general rule, the CFC concept is also applied in both the KOH and NaOH systems.

8.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793427

RESUMO

The intricate geometry and thin walls of the motor housing in new energy vehicles render it susceptible to casting defects during conventional casting processes. However, the lost-foam casting process holds a unique advantage in eliminating casting defects and ensuring the strength and air-tightness of thin-walled castings. In this paper, the lost-foam casting process of thin-walled A356 alloy motor housing was simulated using ProCAST software (2016.0). The results indicate that the filling process is stable and exhibits characteristics of diffusive filling. Solidification occurs gradually from thin to thick. Defect positions are accurately predicted. Through analysis of the defect volume range, the optimal process parameter combination is determined to be a pouring temperature of 700 °C, an interfacial heat transfer coefficient of 50, and a sand thermal conductivity coefficient of 0.5. Microscopic analysis of the motor housing fabricated using the process optimized through numerical simulations reveals the absence of defects such as shrinkage at critical locations.

9.
Front Microbiol ; 15: 1361860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585699

RESUMO

Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.

10.
Vet Microbiol ; 293: 110094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636175

RESUMO

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.


Assuntos
Infecções por Birnaviridae , Proteínas do Capsídeo , Galinhas , Evasão da Resposta Imune , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Animais , Galinhas/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/imunologia , China , Anticorpos Antivirais/imunologia , Mutação , Vacinas Virais/imunologia , Proteínas Estruturais Virais
11.
J Virol ; 98(5): e0018124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639485

RESUMO

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Assuntos
2',5'-Oligoadenilato Sintetase , Autofagia , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Proteínas Estruturais Virais , Replicação Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Animais , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , Humanos , Linhagem Celular
12.
PLoS Pathog ; 20(2): e1011928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324558

RESUMO

The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/química , Mutação , Galinhas , Isoformas de Proteínas/genética , Proteínas do Envelope Viral/genética
13.
Microb Cell Fact ; 23(1): 40, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321474

RESUMO

BACKGROUND: In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS: The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION: These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.


Assuntos
Lactococcus lactis , Timosina , Vacinas , Animais , Interferons/metabolismo , Lactococcus , Leucócitos Mononucleares , Adjuvantes Imunológicos/metabolismo , Proteínas Recombinantes/metabolismo , Timosina/metabolismo , Vacinas/metabolismo , Galinhas , Lactococcus lactis/metabolismo
14.
mBio ; 15(3): e0343323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289089

RESUMO

Viruses have evolved intricate mechanisms to evade host antiviral responses and exploit cellular resources by manipulating the expression profile of host genes. During infection, viruses encode proteins with shutoff activity to globally inhibit host protein synthesis, which is an effective strategy for immune evasion. In this study, compelling evidence shows that infectious bursal disease virus (IBDV) infection triggers the suppression of host protein synthesis. Furthermore, using both in vitro and in vivo viral infection models, we have identified that IBDV specifically impedes the transcription of host genes via the shutoff activity of viral VP5, simultaneously conferring advantages to IBDV infection in these circumstances. The proposed mechanism suggests that VP5 competitively binds to RanBP1, disrupting the RanGDP/GTP gradient. This disruption interferes with cellular nucleocytoplasmic transport, impairing the nuclear import of proteins bearing nuclear localization signals. The nuclear transport of pivotal transcriptional regulatory factors, such as p65 and IFN regulatory factor 7, is also compromised, leading to the inhibition of pro-inflammatory cytokines and interferon expression. This newly discovered strategy employed by IBDV enables them to manipulate host gene expression, providing novel insights into how viruses evade host immune responses and establish infections.IMPORTANCEViruses manipulate host processes at various levels to regulate or evade both innate and adaptive immune responses, promoting self-survival and efficient transmission. The "host shutoff," a global suppression of host gene expression mediated by various viruses, is considered a critical mechanism for evading immunity. In this study, we have validated the presence of host shutoff during infectious bursal disease virus (IBDV) infection and additionally uncovered that the viral protein VP5 plays a pivotal role in inhibiting the overall synthesis of host proteins, including cytokines, through a transcription-dependent pathway. VP5 competitively binds with RanBP1, leading to disruption of the Ran protein cycle and consequently interfering with nucleocytoplasmic transport, which ultimately results in the suppression of host gene transcription. These findings unveil a novel strategy employed by IBDV to evade host innate immunity and rapidly establish infection. This study also suggests a novel supplement to understanding the pathway through which viruses inhibit host protein synthesis.


Assuntos
Vírus da Doença Infecciosa da Bursa , Animais , Vírus da Doença Infecciosa da Bursa/genética , Replicação Viral , Imunidade Inata , Evasão da Resposta Imune , Citocinas , Galinhas
15.
Viruses ; 15(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37766207

RESUMO

Avian reovirus (ARV) infections, characterized by severe arthritis, tenosynovitis, pericarditis, and poor weight gain, have become increasingly serious in recent years. The economic impact is significant as it causes growth inhibition and immunosuppression. Some commercial poultry in China have been widely vaccinated with available ARV vaccines; however, infections continue to occur even after vaccination. This study aimed to isolate a novel variant, ARV-SD19/11103, from the joint tissues of infected broiler chickens vaccinated with ARV vaccines in Shandong Province. Genetic evolution analysis of the major protective antigen σC gene in ARVs showed that ARV-SD19/11103 was located in the genotype cluster I but not in the same sub-cluster as the S1133 vaccine strain. The amino acid sequence similarity between SD19/11103 and vaccine strains S1133, 1733, and 2408 was <80%. After analyzing the amino acid sequences of the σC protein, 33 amino acid differences were found between the new variant isolate and the vaccine strains. This novel variant showed obvious pathogenicity in specific pathogen-free chicken embryos and chicks and could cause serious disease in chickens vaccinated with commercially available ARV vaccines. Cross-neutralization experiments further demonstrated a significant antigenic difference between the novel variant and genotype cluster I ARV strains. The novel variant strain isolated in this study provides an important theoretical basis for understanding the prevalence and genetic evolutionary characteristics of ARV variant strains in our country. This study identified the causes of ARVs circulating and emphasizes the needs for developing new vaccines against novel ARV variants.

16.
Int J Antimicrob Agents ; 62(5): 106969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758064

RESUMO

Commensal bacteria modulate acute immune responses to infection in hosts. In this study, Enterococcus faecium C171 was screened and isolated. This strain has similar basic characteristics to the reference probiotic, including strong anti-inflammatory and anti-infective effects. E. faecium C171 inhibits the production of pro-Caspase-1 and significantly reduces the production of interleukin-1ß (IL-1ß) in vitro. These reactions were confirmed using the Transwell system. Live E. faecium C171 mainly exerted an inhibitory effect on acute inflammation, whereas the anti-infective and immune-activating effects were primarily mediated by the E. faecium C171-produced bacterial extracellular vesicles (Efm-C171-BEVs). Furthermore, in the specific pathogen-free (SPF) chicken model, oral administration of E. faecium C171 increased the relative abundance of beneficial microbiota (Enterococcus and Lactobacillus), particularly Enterococcus, the most important functional bacteria of the gut microbiota. E. faecium C171 significantly inhibited the acute inflammatory response induced by a highly virulent infectious disease, and reduced mortality in SPF chickens by 75%. In addition, E. faecium C171 induced high levels of CD3+, CD4-, and CD8- immunoregulatory cells and CD8+ killer T cells, and significantly improved the proliferative activity of T cells in peripheral blood mononuclear cells, and the secretion of interferon-γ. These findings indicate that E. faecium C171 and Efm-C171-BEVs are promising candidates for adjuvant treatment of acute inflammatory diseases and acute viral infections.


Assuntos
Enterococcus faecium , Probióticos , Viroses , Animais , Leucócitos Mononucleares , Galinhas , Imunidade
17.
Viruses ; 15(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112925

RESUMO

Despite highly effective vaccines, Marek's disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain's infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-ß and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Doenças das Aves Domésticas , Vacinas , Animais , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Galinhas , Virulência , China/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
18.
J Acoust Soc Am ; 153(2): 1027, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859115

RESUMO

Conventional double differential phase-shift keying modulation amplifies the phase noise and performs poorly under the time-varying direct-sequence spread-spectrum (DSSS) communication system. Therefore, the authors propose an iterative reception for DSSS communication in time-varying underwater acoustic channels. First, bit-interleaved coded modulation with iterative decoding integrated with multi-symbol differential detection is used. Second, this paper uses cross correlation method to estimate and track the Doppler shift of each symbol. Based on Doppler estimates, a dynamic linear prediction model is proposed to estimate and track the channel phase variation. Third, an algorithm for adaptive selection of reference signals is utilized to recover the magnitude attenuation of correlation peaks. Numerical simulation results demonstrate that the proposed reception achieves around 9 dB gain compared to conventional differential decision reception under constant acceleration of 0.14 m/s2. During the acoustic communication experiment in Songhua Lake, the proposed reception was tested by using a moving source at a speed of 1-6 knots at 2-m depth and the farthest distance between the transceivers is 2.8 km. The proposed reception achieves only one frame error from a total of 205 frames collected in the lake experiment, and it also achieves error-free communications over 96 frames during a 10 km depth deep-sea experiment.

19.
Anal Chim Acta ; 1247: 340891, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36781250

RESUMO

Bacillus anthracis (B. anthracis) is a gram-positive bacterium responsible for the acute disease anthrax. Rapid and reliable identification of pathogenic B. anthracis is important in the detection of natural infectious disease cases or bio-threats. Herein, a DNA endonuclease targeted CRISPR trans reporter (DETECTR) detection platform based on recombinase polymerase amplification (RPA) was studied. The DETECTR system targeted three sequences from B. anthracis (the BA_5345 chromosomal specific marker, the protective antigen gene pag A from pXO1 plasmid and the capsule-biosynthesis-related gene cap A from pXO2 plasmid). We developed a rapid (<40 min), easy-to-implement and accurate identification method for of B. anthracis nucleic acid with near two-copies sensitivity. The combination of tripartite primer sets is effective for the reliable identification of B. anthracis but also for fast screening of pathogenic strains. More importantly, DETECTR correctly detected simulated clinical blood samples and firstly detected positive samples collected from the location of world War-II site, preserved at north-east China (45°36'55.940″ N, 126°38'33.738″ E) with high sensitivity and specificity. Our study provides insight into the DETECTR-based detection of B. anthracis. We present a novel screening and diagnostic option for pathogenic B. anthracis that can be performed on a user-friendly portable device. Based on its proven reliability, sensitivity, specificity and simplicity, our proposed method can be readily adapted to detect pathogenic B. anthracis, anthrax and biothreats.


Assuntos
Antraz , Bacillus anthracis , Humanos , Antraz/diagnóstico , Antraz/microbiologia , DNA Bacteriano/genética , Reprodutibilidade dos Testes , Plasmídeos , Bacillus anthracis/genética
20.
J Biol Chem ; 299(3): 102962, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717079

RESUMO

Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.


Assuntos
Vírus da Leucose Aviária , Doenças das Aves Domésticas , Receptores Virais , Vitamina B 12 , Animais , Vírus da Leucose Aviária/genética , Galinhas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Complexo Vitamínico B , Vitamina B 12/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA