RESUMO
It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.
Assuntos
Astrágalo , Biotransformação , Endófitos , Fungos , Plantas Medicinais , Astrágalo/microbiologia , Endófitos/metabolismo , Plantas Medicinais/microbiologia , Fungos/metabolismo , Saponinas/metabolismoRESUMO
Objective: Solitary fibrous tumor (SFT) is a spindle cell neoplasm that rarely occurs in orbit. This study aimed to report the clinical, imaging, and pathological features of three patients with recurrent orbital SFTs. Methods: Clinical, imaging, and pathological data of the three patients were retrospectively reviewed, and the results were compared with those of previously reported cases with recurrent orbital SFT. Results: One female and two male patients (mean age, 54 years old) were included in this study. The present cases and literature review showed that the average time to recurrence in patients who aged under 50 years old was shorter than that in those who aged over 50 years old. The most common site for recurrent orbital SFT was the retrobulbar area of the orbit (23.8%). Imaging examinations showed consistent intensity of MRI signals before and after recurrence. Immunohistochemical results of all cases revealed the expressions of CD34. The mitotic rate increased in 4/8 cases, and the percentage of Ki-67-positive cells was elevated in 5/16 cases. Conclusion: These results suggested that young patients were more likely subjected to recurrent orbital SFT. The postoperative pathological diagnosis revealed that patients with recurrent orbital SFT had more nuclear abnormalities and mitotic activity, as well as a higher percentage of Ki-67-positive cells, indicating that orbital recurrent SFT tended to be malignant according to both morphological features and immunohistochemistry results.
RESUMO
The microecology of endophytic fungi in special habitats, such as the interior of different tissues from a medicinal plant, and its effects on the formation of metabolites with different biological activities are of great importance. However, the factors affecting fungal community formation are unclear. This study is the first to utilize "mini-community" remodeling to understand the above phenomena. First, high-throughput sequencing technology was applied to explore the community composition and diversity of endophytic fungi in the above-ground tissues (Ea) and below-ground tissues (Eb) of Ephedra sinica. Second, fungi were obtained through culture-dependent technology and used for "mini-community" remodeling in vitro. Then, the effects of environmental factors, partner fungi, and plant tissue fluid (internal environment) on endophytic fungal community formation were discussed. Results showed that environmental factors played a decisive role in the selection of endophytic fungi, that is, in Ea and Eb, 93.8% and 25.3% of endophytic fungi were halophilic, respectively, and 10.6% and 60.2% fungi were sensitive to high temperature (33 °C), respectively. Meanwhile, pH had little effect on fungal communities. The internal environment of the plant host further promoted the formation of endophytic fungal communities.
Assuntos
Ephedra sinica , Micobioma , Biodiversidade , Endófitos/genética , Ecossistema , Fungos/genética , Plantas/microbiologiaRESUMO
Ephedra sinica is one of the most famous Chinese medicinal plants. The insufficient supply of wild resources has led to the increased use of cultivated products. However, the related medicinal quality differs significantly. Although the influence of external environment on the quality of E. sinica has been studied, the impact of endophytic microbes on it remains vague. This study characterized differential metabolites and microbial community compositions in wild and cultivated E. sinica by combining metabolomics with microbiomics, and explored the effect of endophytes on the formation of differential metabolites further. The results showed that the difference in quality between wild and cultivated E. sinica was mainly in the productions of alkaloids, flavonoids, and terpenoids. The associated endophytes had special compositional characteristics. For instance, the distribution and abundance of dominant endophytes varied between wild and cultivated E. sinica. Several endophytes had significant or highly significant correlations with the formations of ephedrine, pseudoephedrine, D-cathinone, methcathinone, coumarin, kaempferol, rhamnetin, or phenylacetic acid. This study will deepen our understanding of the plant-endophyte interactions and provide a strategy for the quality control of E. sinica products.
Assuntos
Medicamentos de Ervas Chinesas , Ephedra sinica , Ephedra sinica/metabolismo , Efedrina/metabolismo , Metabolômica , Endófitos/metabolismoRESUMO
Metal sulfides are promising supercapacitor electrode materials with a large theoretical capacity and rich operability. However, its unsatisfactory cycle stability and rate performance are tough problems to be solved. Therefore, the preparation of metal sulfide-based electrode materials with a stable structure, long cycle life, and high-rate performance is an effective strategy to solve these problems. Herein, metal sulfides were first crystallized into crosslinked nanosheet and nanotube structures, which ensure abundant active sites for redox reactions. Then, the further modification of the prepared material by spraying graphene was carried out, which, as demonstrated by combining experimental data and physical characterization, leads to a more complete hollow structure, enlarged electrochemical reaction sites, and reduced electrolyte transport distance, thus improving the charge transfer kinetics. In the early stage of the charge-discharge cycle test, the electrode material undergoes a self-activation process, which transforms the electrode material from one equilibrium state to a new equilibrium state. Therefore, 2-CSNS@RGO electrode capacitance was 1650.13 C g-1 at 1 A g-1 with remarkable cycling of 3000 cycles at 10 A g-1, and it retains 186.1% capacity of the initial value. An asymmetric supercapacitor (2-CSNS@RGO//AC) was prepared by coupling 2-CSNS@RGO as the positive electrode and activated carbon (AC) as the negative electrode. 2-CSNS@RGO//AC has an energy density of 88 W h kg-1 at a power density of 0.8 kW kg-1, and the capacity retention rate is 131.6% after 30 000 cycles at 10 A g-1.
RESUMO
To improve the performance of the Ce0.8Gd0.2O2-δ (GDC) electrolyte in a solid oxide fuel cell, it is necessary to block the electronic conduction due to Ce3+/Ce4+ transitions occurring at elevated temperatures. In this work, a GDC/ScSZ double layer consisting of 50 nm GDC and 100 nm Zr0.8Sc0.2O2-δ (ScSZ) thin films were deposited on a dense GDC substrate by the pulsed laser deposition (PLD) technology. The effectiveness of the double barrier layer in blocking the electronic conduction of the GDC electrolyte was investigated. The results showed that the ionic conductivity of GDC/ScSZ-GDC was slightly lower than that of GDC in the temperature range of 550-750 °C, but the difference gradually decreased with the increase in temperature. At 750 °C, the conductivity of GDC/ScSZ-GDC was 1.54 × 10-2 S·cm-1, which was almost the same as that of GDC. The electronic conductivity of GDC/ScSZ-GDC was 1.28 × 10-4 S·cm-1, which was lower than that of GDC. The conductivity results showed that the ScSZ barrier layer can reduce electron transfer effectively. More obviously, the open-circuit voltage and the peak power density of the (NiO-GDC)|GDC/ScSZ-GDC|(LSCF-GDC) cell were higher than those of the (NiO-GDC)|GDC|(LSCF-GDC) cell in the temperature range of 550-750 °C. The superior performance of the GDC/ScSZ-GDC electrolyte is attributed to the ScSZ thin layer, which is effective in blocking the electronic conduction of the GDC electrolyte.
RESUMO
In order to promote the heavy metal ions removal of porous gel adsorbent and protect the adsorbent from other pollutants in wastewater, the tetrapod ZnO whiskers (tZnO) modified by amino-chain brush was introduced into the polyvinyl alcohol (PVA) matrix to prepare the PVA/NH2@TAtZnO composites with brush structure for toxic Pb(II) removal. The adsorption property, adsorption process and adsorption mechanism were studied by adsorption isotherms, adsorption kinetics, adsorption thermodynamics, SEM-EDS analysis and XPS analysis. And the anti-interference ability and anti-interference mechanism were researched by SEM-EDS analysis and XPS analysis. It was found that the PVA/NH2@TAtZnO composites displayed a soft-hard compound pore-brush structure and showed a good selective adsorption on Pb(II). The research of isotherms and kinetics indicated that the adsorption process was fitted well to Langmuir model and pseudo-second-order model, respectively, and the research of thermodynamics revealed the endothermic nature. The adsorption mechanism was inferred as the combination of predominant chemisorption and subsidiary physisorption. Comparing with the neat PVA matrix, the PVA/NH2@TAtZnO composites displayed a good anti-interference property on Pb(II) adsorption and showed an alleviative clogging pore-canal structure in the wastewater with SiO2 NPs or PAC flocculants. The anti-interference intensity ΔQ and anti-interference factor χ were proposed to reflect the anti-interference ability of this adsorbent which was promoted with the increasing amino brush length or density. By the analysis of SEM-EDS and XPS, the anti-interference mechanism was explored as the steric-hinerance effect of tZnO hard brush to suspended SiO2 NPs pollutant and the coordination effect of functional amino soft brush to soluble PAC pollutant. Besides, the prepared PVA/NH2@TAtZnO adsorbent possessed a good reusability under multiple adsorption-desorption processes and also presented a well applicability in real water matrix. The research indicated the huge potential of prepared PVA/NH2@TAtZnO adsorbent in heavy metal ions removal.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Álcool de Polivinil/química , Chumbo/análise , Águas Residuárias , Porosidade , Dióxido de Silício , Metais Pesados/análise , Termodinâmica , Íons/química , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de HidrogênioRESUMO
To break the stereotype that silica can only be reduced via a magnesiothermic and aluminothermic method at low-temperature condition, the novel strategy for converting silica to SiOx using disproportionation effect of SnO generated via low-temperature pyrolysis coreduction reaction between SnO2 and rice husk is proposed, without any raw materials waste and environmental hazards. After the low-temperature pyrolysis reaction, SnOy @C/SiOx composites with unique structure (Sn/SnO2 dispersed on the surface and within pores of biochar as well as SiOx residing in the interior) are obtained due to the exclusive biological properties of rice husk. Such unique structural features render SnOy @C/SiOx composites with an excellent talent for repairing the damaged structure and the highly electrochemical storage ability (530.8 mAh g-1 at 10 A g-1 after 7500 cycles). Furthermore, assembled LiFePO4 ||SnOy -50@C/SiOx full cell displays a high discharge capacity of 463.7 mAh g-1 after 100 cycles at 0.2 A g-1 . The Li+ transport mechanism is revealed by density functional theory calculations. This work provides references and ideas for green, efficient, and high-value to reduce SiO2 , especially in biomass, which also avoids the waste of raw materials in the production process, and becomes an essential step in sustainable development.
Assuntos
Líquidos Corporais , Dióxido de Silício , Biomassa , Eletrodos , Temperatura BaixaRESUMO
The increasing number of regions have begun to construct age-friendly medical institutions to further promote the "successful aging" of the elderly in mainland China. This study deeply analyzes the development status of age-friendly medical institutions abroad and describes the policies, research, evaluation, and certification of different countries. This study focuses on the current construction status of age-friendly medical institutions in mainland China. With the issuing of several national policies, mainland China has established a top-down system for the construction of age-friendly medical institutions, which has been gradually implemented in the actions of medical institutions. On the whole, the goal and evaluation standard are clear and the action is rapid. However, it also faces many challenges and problems. This study puts forward various suggestions for the construction of age-friendly medical institutions, such as increasing manpower and financial investment and carrying out evidence-based research. In particular, we should pay attention to promoting a bottom-up construction system, understand the actual needs of the elderly, pay attention to the personal experience of the elderly, and fully mobilize the active and full participation of the whole society.
RESUMO
Ephedra sinica, a well-known Chinese medicinal plant, is characterized as having the opposite medicinal effect among its root and stem. However, there is a lack of understanding to differentiate the active components present in the root and stem of E. sinica, as well as the molecular mechanisms underlying the formation of the differential compounds, which has significantly hampered the further development and utilization of E. sinica resource. In this study, forty-five differential metabolic markers are affiliated to alkaloids, flavonoids, terpenoids, and organic acids between root and stem of E. sinica, and sixty genes of key enzymes are involved in their biosynthesis distributed in metabolic pathway branches such as phenylalanine metabolism, flavonoid biosynthesis and phenylpropane biosynthesis, based on combination non-targeted metabolome with transcriptome technologies. The finding revealed that the expression activity changes of these enzyme genes had a direct impact on the distinction of differential metabolic markers in the root and stem of E. sinica. This study will help to understand the molecular mechanism of the differentiation and biosynthesis of the primary active metabolites in the root and stem of E. sinica, providing a theoretical foundation for its quality control and promotion in cultivation.
Assuntos
Alcaloides , Ephedra sinica , Ephedra sinica/genética , Ephedra sinica/metabolismo , Alcaloides/metabolismo , Flavonoides/metabolismo , Terpenos/metabolismo , FenilalaninaRESUMO
There are many species of Chinese traditional leguminosae family plants that are well known for their medicinal applications, such as Astragalus membranaceus, Catsia tora, Glycyrrhiza uralensis, Sophora flavescens and Albacia acacia. Their unique bioactive composition and internal phenological environment contribute to the formation of specific and unique endophytic fungal communities, which are important resources for new compounds used in a variety of pharmacological activities. Nonetheless, they have not been systematically studied. In the last decade, nearly 64 genera and thousands of species of endophytic fungi have been discovered from leguminosae plants, as well as 138 secondary metabolites (with 34 new compounds) including flavonoid, alkaloids, phenol, anthraquinone, macrolide, terpenoid, phytohormone and many more. These were shown to have diverse applications and benefits, such as antibacterial, antitumor, antioxidative, immunoregulatory and neuroprotective properties. Here, we provide a summarized overview with the aim of raising awareness of endophytic fungi from medicinal leguminosae plants and providing a comprehensive review of the discoveries of new natural products that may be of medicinal and pharmaceutical importance.
Assuntos
Produtos Biológicos , Fabaceae , Plantas Medicinais , Produtos Biológicos/metabolismo , Endófitos/metabolismo , Fungos , Plantas Medicinais/microbiologiaRESUMO
Gastric cancer is a heterogeneous group of diseases with only a fraction of patients responding to immunotherapy. The relationships between tumor DNA damage response, patient immune system and immunotherapy have recently attracted attention. Accumulating evidence suggests that DNA repair landscape is a significant factor in driving response to immune checkpoint blockade (ICB) therapy. In this study, to explore new prognostic and predictive biomarkers for gastric cancer patients who are sensitive and responsive to immunotherapies, we developed a novel 15-DNA repair gene signature (DRGS) and its related scoring system and evaluated the efficiency of the DRGS in discriminating different molecular and immune characteristics and therapeutic outcomes of patients with gastric adenocarcinoma, using publicly available datasets. The results demonstrated that DRGS high score patients showed significantly better therapeutic outcomes for ICB compared to DRGS low score patients (p < 0.001). Integrated analysis of multi-omics data demonstrated that the patients with high DRGS score were characteristic of high levels of anti-tumor lymphocyte infiltration, tumor mutation burden (TMB) and PD-L1 expression, and these patients exhibited a longer overall survival, as compared to the low-score patients. Results obtained from HPA and IHC supported significant dysregulation of the genes in DRGS in gastric cancer tissues, and a positive correlation in protein expression between DRGS and PD-L1. Therefore, the DRGS scoring system may have implications in tailoring immunotherapy in gastric cancers. A preprint has previously been published (Yuan et al., 2021).
RESUMO
Growing research suggests that endophytic fungi deeply affect plant physiology, development, and metabolism, which has become an indispensable subject in plant research. However, the micromolecular mechanisms remain vague due to the complexity of the interactions. This article summarizes the latest progress in the mechanism studies of the symbiotic relationships between endophytic fungi and plants. We address the aspects from signal generation, plant defense, to fungal coping strategies to establish the balanced constraint relationships between fungi and their hosts that finally form "a community of shared future." These processes do not occur in isolation but in synergy. Both endophytic fungi and their host plants contribute to establishing the stable symbiosis. New insights have been provided into a deeper understanding of the occurrence of species interactions and their applications to solving practical problems.
Assuntos
Endófitos , Fungos , Endófitos/metabolismo , Fungos/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , SimbioseRESUMO
Increased understanding of the interactions between endophytic fungi and plants has led to the discovery of a new generation of chemical compounds and processes between endophytic fungi and plants. Due to the long-term co-evolution between fungal endophytes and host plants, endophytes have evolved special biotransformation abilities, which can have critical consequences on plant metabolic processes and their composition. Biotransformation or bioconversion can impact the synthesis and decomposition of hormones, sugars, amino acids, vitamins, lipids, proteins, and various secondary metabolites, including flavonoids, polysaccharides, and terpenes. Endophytic fungi produce enzymes and various bioactive secondary metabolites with industrial value and can degrade or sequester inorganic and organic small molecules and macromolecules (e.g., toxins, pollutants, heavy metals). These fungi also have the ability to cause highly selective catalytic conversion of high-value compounds in an environmentally friendly manner, which can be important for the production/innovation of bioactive molecules, food and nutrition, agriculture, and environment. This work mainly summarized recent research progress in this field, providing a reference for further research and application of fungal endophytes. KEY POINTS: â¢The industrial value of degradation of endophytes was summarized. ⢠The commercial value for the pharmaceutical industry is reviewed.
Assuntos
Fungos , BiotransformaçãoRESUMO
This study was aimed to investigate whether host plant species and lifestyles, and environmental conditions in the desert affect endophytic fungi composition. Endophytic fungal communities from parasitic plant Cynomorium songaricum and its host Nitraria tangutorum were investigated from three sites including Tonggu Naoer, Xilin Gaole, and Guazhou in Tengger and Badain Jaran Deserts in China using the next-generation sequencing of a ribosomal RNA gene region. Similarity and difference in endophytic fungal composition from different geographic locations were evaluated through multivariate statistical analysis. It showed that plant genetics was a deciding factor affecting endophytic fungal composition even when C. songaricum and N. tangutorum grow together tightly. Not only that, the fungal composition was also greatly affected by the local environment and rainfall. However, the distribution and richness of fungal species indicated that the geographical distance exerted little influence on characterizing the fungal composition. Overall, the findings suggested that plant species, parasitic or non-parasitic lifestyles of the plant, and local environment strongly affected the number and diversity of the endophytic fungal species, which may provide valuable insights into the microbe ecology, symbiosis specificity, and the tripartite relationship among parasitic plant, host, and endophytic fungi, especially under desert environment.
Assuntos
Cynomorium/microbiologia , Clima Desértico , Magnoliopsida/microbiologia , Micobioma , China , Cynomorium/classificação , Cynomorium/genética , Cynomorium/fisiologia , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Interações entre Hospedeiro e Microrganismos , Magnoliopsida/classificação , Magnoliopsida/genética , Magnoliopsida/parasitologia , Especificidade da EspécieRESUMO
AIMS: To determine the clinicopathological features of pulmonary sclerosing pneumocytoma (PSP) with spindle cells and in cases with positive detection of PSP cells in the lymph nodes. METHODS AND RESULTS: This article report the clinical, histological and immunohistochemical features of PSP with dense spindle stromal cells in five patients (including one case with lymph node metastasis) and PSP accompanied by positive nodes in two patients out of 239 cases diagnosed at our institution between 2007 and 2019. The literature on PSP was also reviewed in detail. Six patients were female, and one (with a positive node) was male; their average age was 53 years. Thoracic imaging revealed solid tumours with clear borders and a uniform texture in six patients, but one patient had a lobulated tumour with uneven densities. All tumours were unifocal, and they had an average size of 31 mm. Tumours from five cases were mainly composed of solid regions of diffuse spindle cells rather than polygonal cells. Immunohistochemical staining demonstrated that thyroid transcription factor-1, vimentin, epithelial membrane antigen (weak) and oestrogen receptor (partial) were expressed in spindle cells. The average follow-up time was 31 months. Two of the 234 PSP cases for which adequate data were available had positive nodes (metastasis rate: 0.8%), and one of the five patients with PSP with spindle cells showed lymph node metastasis (metastasis rate: 20%). In addition, stromal cells were found to be predominant at metastatic sites. CONCLUSIONS: Spindle cells are present among the stromal cells of PSP, and not all of them are round cells. PSP patients with spindle cells or male patients may be more prone to metastasis than others.
Assuntos
Metástase Linfática/patologia , Hemangioma Esclerosante Pulmonar/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Ephedra herb is a traditional Chinese medicine with a long history. Conventionally, it was used as a folk phytomedicine in many ancient medical books and traditional prescriptions. Up to date, a variety of specific ingredients have been found in Ephedra herb, mainly including alkaloids, flavonoids, tannins, polysaccharides, organic acids, volatile oils, and many other active compounds. These components from Ephedra herb account for its use as the accurate treatment of cold, cough, cardiovascular and immune system disease, cancer, microbial infection, and other diseases. Moreover, with the fast development of novel chemistry and medicine technology, new chemical constituents and pharmacological effects of Ephedra herb are increasingly identified, demonstrating their great potential for various diseases treatment. Therefore, further detailed understanding and investigation of this ancient herb will offer new opportunities to develop novel therapeutics. This study systematically reviews its progress of phytochemistry, traditional and modern pharmacology based on research data that have been reported, aiming at providing useful insight for commercial exploitation, further study and precision medication of Ephedra herb in future.
Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ephedra/química , Animais , Etnofarmacologia , Humanos , Medicina Tradicional ChinesaRESUMO
A flower cluster structural histidine-functionalized multi-walled carbon nanotube-graphene oxide nanoribbon/Co-Ni LDH (His-MW/LDH) composite was synthesized via the microwave method. In this study, we used His-MW as a carbon material to synthesize the electrode because it not only has the properties of MWCNT-GONR (MW) but also completes the N doping process due to the addition of histidine. His-MW adhered to the LDH flower cluster, and the radius of the composite was found to be nearly 1 µm. The synergistic effects of His-MW and LDH could effectively increase the specific surface areas and conductivity of the composite, thereby endowing it with high specific capacitance (1674 F g-1) and admirable cycling stability (83.33% capacitance retention). Moreover, we assembled an asymmetric supercapacitor, and it possessed 39.47 W h kg-1 at 0.80 kW kg-1 as well as prominent cycling stability (93.81% capacitance retention). This study proves the feasibility of synthesizing the histidine-functionalized carbon derivative/LDH composite by the microwave method. Moreover, we are optimistic that the electrode material can be extensively used in supercapacitors because of its splendid electrochemical properties and facile synthesis.
RESUMO
BACKGROUND: The contents of some its crucial metabolites tend to decrease when Rhodiola crenulata is cultured at low altitude. Interestingly, it was found that an endophyte, Phialocephala fortinii, could alleviate this problem. RESULTS: There were 16 151 differential genes including 14 706 up-regulated and 1445 down-regulated unigenes with significant differences (P < 0.05), and a total of 1432 metabolites exhibited statistically significant (P < 0.05) metabolic differences comprising 27 different marker metabolites which showed highly significant values of VIP > 5 and P < 0.01. Results highlight differential regulation of 20 enzymatic genes that are involved in the biosynthesis of five different marker metabolites including acetaldehyde, homocysteine, cyclopropylamine, 1-pyrrolinium and halistanol sulfate. CONCLUSIONS: The positive physiological effect of P. fortinii on R. crenulata encompasses differential regulation in carbohydrate metabolism, lipid metabolism and secondary metabolite synthesis. © 2020 Society of Chemical Industry.
Assuntos
Ascomicetos/fisiologia , Endófitos/fisiologia , Proteínas de Plantas/genética , Rhodiola/microbiologia , Ascomicetos/genética , Vias Biossintéticas , Ciclopropanos/metabolismo , Endófitos/genética , Homocisteína/metabolismo , Proteínas de Plantas/metabolismo , Rhodiola/química , Rhodiola/enzimologia , Rhodiola/genética , TranscriptomaRESUMO
A flower ball-like histidine-functionalized graphene quantum dots/Ni-Co LDH (His-GQD/LDH) composite is synthesized via microwave method. The GQDs are uniformly interspersed on LDH surface and the radius of flower balls is approximately 200 nm. The synergistic effect of His-GQD and LDH can signally increase the specific surface areas and conductivity of the composite, thus endowing the composite high specific capacitance (1526 F g-1) and an admirable cycling stability (82.36% capacitance retention). Moreover, we have manufactured a supercapacitor employing His-GQD/LDH and active carbon (AC) as positive/negative electrodes. The device exhibits the maximum energy of 48.89 W h kg-1 at 0.80 kW kg-1, as well as prominent cycling stability (91.13% capacitance retention). This work provides a practicle experimental method of synthesizing hybridizing histidine-functionalized carbon derivatives with LDH by microwave synthesis. Meanwhile, we are optimistic to believe that the electrode material can be extensively applied for supercapacitor because of its splendid electrochemical properties and facile synthesis.