Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(11): 9431-9446, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38818879

RESUMO

Synthetic lethality has recently emerged as a new approach for the treatment of mutated genes that were previously considered undruggable. Targeting methionine adenosyltransferase 2A (MAT2A) in cancers with deletion of the methylthioadenosine phosphorylase (MTAP) gene leads to synthetic lethality and thus has attracted significant interest in the field of precise anticancer drug development. Herein, we report the discovery of a series of novel MAT2A inhibitors featuring a pyrazolo[3,4-c]quinolin-4-one skeleton based on structure-based drug design. Further optimization led to compound 39, which has a high potency for inhibiting MAT2A and a remarkable selectivity for MTAP-deleted cancer cell lines. Compound 39 has a favorable pharmacokinetic profile with high plasma exposure and oral bioavailability, and it exhibits significant efficacy in xenograft MTAP-depleted models. Moreover, 39 demonstrates excellent brain exposure with a Kpuu of 0.64 in rats.


Assuntos
Encéfalo , Desenho de Fármacos , Inibidores Enzimáticos , Metionina Adenosiltransferase , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Ratos , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/síntese química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos , Masculino , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Org Chem ; 82(19): 10341-10349, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28902507

RESUMO

A new substitution pattern of BF2 azadipyrromethene (azaBODIPY) dyes was obtained by phenanthrene fusion through a key palladium-catalyzed intramolecular C-H activation reaction. These [a]-phenanthrene-fused azaBODIPYs have a near planar structure of the phenanthrene-fused azadipyrromethene core in the crystalline state. The chromophore absorbs (log ε > 5) and fluoresces (ϕ = 0.32-0.38) strongly above 700 nm with excellent photostability and may be used as an attractive bright NIR bioimaging agent.

3.
Chem Asian J ; 12(18): 2486-2493, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28730703

RESUMO

A new class of phenanthrene-fused BF2 azadipyrromethene (azaBODIPY) dyes have been synthesized through a tandem Suzuki reaction and oxidative ring-fusion reaction, or a palladium-catalyzed intramolecular C-H activation reaction. These phenanthrene-fused azaBODIPY dyes are highly photostable and display markedly redshifted absorption (up to λ=771 nm) and emission bands (λ≈800 nm) in the near-infrared region. DFT calculations and cyclic voltammetry studies indicate that, upon annulation, more pronounced stabilization of the LUMO is the origin of the bathochromic shift of the absorption and high photostability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA