Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
MedComm (2020) ; 5(7): e652, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39006763

RESUMO

Somatic mutations related to clonal hematopoiesis of indeterminate potential (CHIP) are risk factors for stroke. The impact of DNMT3A, the most mutated gene in CHIP, on clinical functional outcomes of acute ischemic stroke (AIS) remains unclear. In a well-characterized cohort of 8524 ischemic stroke patients, we demonstrated that DNMT3A-driven CHIP was significantly associated with neurological disability in these patients. With a stroke mouse model of transient middle cerebral artery occlusion (tMCAO), we demonstrated that DNMT3A protein levels in the brain penumbra increased. The DNMT3A inhibitor RG108 administration amplified neutrophil proliferation in the blood, promoted neutrophil infiltration into the brain penumbra, and exaggerated proinflammatory activation in tMCAO male mice. DNMT3A inhibition also significantly increased infarct volume and worsened neurobehavioral function in tMCAO male mice. In conclusion, DNMT3A somatic mutations are associated with worsened neurological disability in some patients with AIS, potentially through increased neutrophil proliferation and infiltration in the ischemic brain region. These findings suggest a possible mechanism for proinflammatory activation and tissue damage in the affected brain tissue, highlighting the need for further research in this area.

2.
Int J Biol Macromol ; 276(Pt 1): 133833, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013513

RESUMO

Pasteurization is an effective sterilization technique for the treatment of liquid egg white (LEW), but the pasteurization temperature is generally limited because increased temperature can lead to aggregation of the proteins and affect their processing properties. In this study, phosphorylation modification was used to increase the thermal stability and pasteurization temperature of LEW, aiming to enhance the pasteurization sterilizing effect. The FT-IR results showed that the phosphate groups were successfully grafted into protein molecules, improving the order degree of protein molecules. In this case, the pasteurization temperature of LEW increased from 58 °C to 61 °C, without accompanying thermal aggregation. The molecular structural results suggested that the enhanced thermal stability was attributed to the decreased average particle size and the increased electrostatic repulsion between protein molecules, which largely reduced the turbidity of LEW during pasteurization treatment. Meanwhile, this process was dominated by noncovalent interactions (hydrophobic interactions and hydrogen bonding). Furthermore, the phosphorylation modification can synchronously improve emulsifying and foaming properties of LEW. Therefore, this work suggested that phosphorylation has great potential to improve thermal stability and pasteurization temperature of LEW, which can be utilized to extend its sterilizing effect and shelf life.

3.
Angew Chem Int Ed Engl ; : e202410383, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922734

RESUMO

Hydrogel actuators with complex 3D initial shapes show numerous important applications, but it remains challenging to fabricate such actuators. This article describes a polyelectrolyte-based strategy for modulating small-scale internal stresses within hydrogels to construct complex actuators with tailored 3D initial shapes. Introducing polyelectrolytes into precursor solutions significantly enhances the volume shrinkage of hydrogel networks during polymerization, allowing us to modulate internal stresses. Photopolymerization of these polyelectrolyte-containing solutions through a mask produces mechanically strong hydrogel sheets with large patterned internal stresses. Consequently, these hydrogel sheets attain complex 3D initial shapes at equilibrium, in contrast to the planar initial configuration of 2D actuators. We demonstrate that these 3D actuators can reversibly transform into other 3D shapes (i.e., 3D-to-3D shape transformations) in response to external stimuli. Additionally, we develop a predictive model based on the Flory-Rehner theory to analyze the polyelectrolyte-mediated shrinking behaviors of hydrogel networks during polymerization, allowing precise modulation of shrinkage and internal stress. This polyelectrolyte-boosted shrinking mechanism paves a route to the fabrication of high-performance 3D hydrogel actuators.

4.
Microbiol Spectr ; 12(8): e0030924, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38888361

RESUMO

The tumor suppressor p53, primarily functioning as a transcription factor, has exhibited antiviral capabilities against various viruses in chickens, including infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). Nevertheless, the existence of a universal antiviral mechanism employed by chicken p53 (chp53) against these viruses remains uncertain. This study conducted a comprehensive comparison of molecular networks involved in chp53's antiviral function against IBDV, ALV-J, and ILTV. This was achieved through an integrated analysis of ChIP-seq data, examining chp53's genome-wide chromatin occupancy, and RNA-seq data from chicken cells infected with these viruses. The consistent observation of chp53 target gene enrichment in metabolic pathways, confirmed via ChIP-qPCR, suggests a ubiquitous regulation of host cellular metabolism by chp53 across different viruses. Further genome binding motif conservation analysis and transcriptional co-factor prediction suggest conserved transcriptional regulation mechanism by which chp53 regulates host cellular metabolism during viral infection. These findings offer novel insights into the antiviral role of chp53 and propose that targeting the virus-host metabolic interaction through regulating p53 could serve as a universal strategy for antiviral therapies in chickens.IMPORTANCEThe current study conducted a comprehensive analysis, comparing molecular networks underlying chp53's antiviral role against infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). This was achieved through a combined assessment of ChIP-seq and RNA-seq data obtained from infected chicken cells. Notably, enrichment of chp53 target genes in metabolic pathways was consistently observed across viral infections, indicating a universal role of chp53 in regulating cellular metabolism during diverse viral infections. These findings offer novel insights into the antiviral capabilities of chicken p53, laying a foundation for the potential development of broad-spectrum antiviral therapies in chickens.


Assuntos
Vírus da Leucose Aviária , Galinhas , Herpesvirus Galináceo 1 , Vírus da Doença Infecciosa da Bursa , RNA-Seq , Proteína Supressora de Tumor p53 , Animais , Galinhas/virologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/fisiologia , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/fisiologia , Herpesvirus Galináceo 1/genética , Sequenciamento de Cromatina por Imunoprecipitação , Antivirais/farmacologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Regulação da Expressão Gênica
5.
Front Endocrinol (Lausanne) ; 15: 1378158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933818

RESUMO

Objective: Despite the fact that China amounts to one-fifth of the world's population, has a higher proportion of the elderly, and has a higher prevalence of osteoporosis and fracture, limited studies have investigated the association between dietary patterns and bone mineral density (BMD) as well as fracture risk among the elderly Chinese population. We aimed to investigate the association between different dietary patterns and BMD as well as the risk of fractures, and this association may vary between elderly women and men. Methods: Building upon the China Osteoporosis Prevalence Study, we included 17,489 subjects aged ≥40 years old randomly sampled across 44 counties/districts of 11 provinces or municipalities in China who completed a food frequency questionnaire. BMD was measured by dual x-ray absorptiometry. Vertebral fracture was defined based on lateral spine radiographs using the semi-quantitative technique of Genant. Results: A diet rich in "carnivorous", "vegetarian", "dairy, fruit, and egg" was significantly associated with higher BMD at total hip (TH), femoral neck (FN), and lumbar spine 1-4 (L1-4). Yet, a diet rich in "beverage and fried food" was associated with a lower BMD at the FN and L1-4. High quartiles of the carnivorous diet were associated with 34%-39% reduced risk of clinical fracture in the past 5 years and vertebral fracture. Stronger associations were observed among women. Sensitivity analysis among postmenopausal women presented even stronger positive associations between carnivorous and vegetarian diets and high BMD, as well as between carnivorous diet and reduced risk of fractures. Conclusions: Our study suggested that a diet rich in meat, vegetables, and dairy, fruit, and eggs might be associated with greater BMD and a lower fracture risk, while beverage and fried foods may be associated with a lower BMD at L1-4, especially among elderly women. These findings are relevant to provide recommendations on dietary nutrition regarding the elderly population at high risk of osteoporosis and fractures, especially postmenopausal women.


Assuntos
Densidade Óssea , Dieta , Osteoporose , Humanos , Feminino , China/epidemiologia , Idoso , Pessoa de Meia-Idade , Prevalência , Osteoporose/epidemiologia , Masculino , Fatores de Risco , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Absorciometria de Fóton , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/etiologia , Comportamento Alimentar , Estudos Transversais , Padrões Dietéticos
6.
Virology ; 597: 110159, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943781

RESUMO

Therapies targeting virus-host interactions are seen as promising strategies for treating gallid alphaherpesvirus 1 (ILTV) infection. Our study revealed a biphasic activation of two MAPK cascade pathways, MEK/ERK and p38 MAPK, as a notably activated host molecular event in response to ILTV infection. It exhibits antiviral functions at different stages of infection. Initially, the MEK/ERK pathway is activated upon viral invasion, leading to a broad suppression of metabolic pathways crucial for ILTV replication, thereby inhibiting viral replication from the early stage of ILTV infection. As the viral replication progresses, the p38 MAPK pathway activates its downstream transcription factor, STAT1, further hindering viral replication. Interestingly, ILTV overcomes this biphasic antiviral barrier by hijacking host p38-AKT axis, which protects infected cells from the apoptosis induced by infection and establishes an intracellular equilibrium conducive to extensive ILTV replication. These insights could provide potential therapeutic targets for ILTV infection.


Assuntos
Infecções por Herpesviridae , Sistema de Sinalização das MAP Quinases , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Alphaherpesvirinae/fisiologia , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Interações Hospedeiro-Patógeno , Linhagem Celular , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética
7.
Stat Med ; 43(11): 2203-2215, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38545849

RESUMO

This study is to give a systematic account of sample size adaptation designs (SSADs) and to provide direct proof of the efficiency advantage of general SSADs over group sequential designs (GSDs) from a different perspective. For this purpose, a class of sample size mapping functions to define SSADs is introduced. Under the two-stage adaptive clinical trial setting, theorems are developed to describe the properties of SSADs. Sufficient conditions are derived and used to prove analytically that SSADs based on the weighted combination test can be uniformly more efficient than GSDs in a range of likely values of the true treatment difference δ $$ \delta $$ . As shown in various scenarios, given a GSD, a fully adaptive SSAD can be obtained that has sufficient statistical power similar to that of the GSD but has a smaller average sample size for all δ $$ \delta $$ in the range. The associated sample size savings can be substantial. A practical design example and suggestions on the steps to find efficient SSADs are also provided.


Assuntos
Projetos de Pesquisa , Tamanho da Amostra , Humanos , Modelos Estatísticos , Ensaios Clínicos Adaptados como Assunto/estatística & dados numéricos , Ensaios Clínicos Adaptados como Assunto/métodos , Simulação por Computador , Ensaios Clínicos como Assunto/métodos
8.
Neural Regen Res ; 19(10): 2229-2239, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488557

RESUMO

JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.

9.
BMC Prim Care ; 25(1): 45, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287250

RESUMO

BACKGROUND: Team-based care is an essential part of primary health care (PHC), and its team service delivery process is a systematic one involving multiple and complex influences. Research on the formation mechanism can help improve the effectiveness of primary health care teams (PHCTs). METHODS: First, based on the Donabedian model, we explored the theoretical framework of a PHC team's effectiveness formation mechanism. Semi-structured interviews were conducted with 23primary health care team members in Hangzhou, Zhejiang Province, China. A total of seven factors were then included as conditional variables using the crisp set qualitative comparative analysis (csQCA) to explore the complex influences between them and the outcome variable through univariate necessity analysis and path configuration analysis. RESULTS: Univariate necessity analysis showed that only "Clear Goals" in the structural dimension were necessary for team effectiveness perception. Six pathways to good primary health care team perception of effectiveness were identified. Two of these paths were more typical. CONCLUSION: "Clear Goals" was the core variable that should be emphasized when exploring the mechanism of PHCT formation. The results suggest that human resources in the management team should be rationally allocated, goal-oriented, and given good attention. Future studies should explore complex combinations of PHCT factors to improve the effectiveness of PHCTs.


Assuntos
Avaliação de Processos e Resultados em Cuidados de Saúde , Atenção Primária à Saúde , Humanos , Pesquisa Qualitativa , China
10.
ACS Appl Mater Interfaces ; 15(46): 54018-54026, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37957821

RESUMO

The integration of photonic crystals and self-shaping actuators is a promising method for constructing powerful biomimetic color-changing actuators. The major barrier is that common photonic crystals generally block the transfer/orientation of monomers/fillers and hence hinder the formation of heterogeneous structures for programmed 3D deformations as well as degrade the deformation capacity and mechanical properties of actuators. Herein, we present the construction of complex and strong 3D color-changing hydrogel actuators by asymmetric photolithography based on soft, permeable photonic crystals. The soft permeable photonic crystals are assembled by hydrogel microspheres with an ultralow volume fraction. During the asymmetric photolithography, the monomers in precursor solutions can thus transfer freely to generate heterogeneous microstructures, spatially patterned internal stresses, and interpenetrating networks for programming the deformation trajectories and initial 3D configurations and enhancing mechanical properties of actuators. Various 3D color-changing hydrogel actuators (e.g., flower and scroll painting) are constructed for applications such as information encryption and display.

11.
Acta Biomater ; 170: 567-579, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683968

RESUMO

Adipose tissue is an endocrine organ. It serves many important functions, such as energy storage, hormones secretion, and providing insulation, cushioning and aesthetics to the body etc. Adipose tissue engineering offers a promising treatment for soft tissue defects. Early adipose tissue production and long-term survival are closely associated with angiogenesis. Decellularized matrix has a natural ECM (extracellular matrix) component, good biocompatibility, and low immunogenicity. Therefore, in this study, the injectable composite hydrogels were developed to construct vascularized tissue-engineered adipose by using the pro-angiogenic effects of aortic adventitia extravascular matrix (Adv) or small intestinal submucosa (SIS), and the pro-adipogenic effects of decellularized adipose tissue (DAT). The composite hydrogels were cross-linked by genipin. The adipogenic and angiogenic abilities of composite hydrogels were investigated in vitro, and in a rat dorsal subcutaneous implant model. The results showed that DAT and SIS or Adv 1:1 composite hydrogel promoted the migration and tube formation of endothelial cells. Furthermore, DAT and SIS or Adv 1:1 composite hydrogel enhanced adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs) through activation of PPARγ and C/EBPα. The in vivo studies further demonstrated that DAT with SIS or Adv in a 1:1 ratio also significantly promoted adipogenesis and angiogenesis. In addition, DAT with SIS or Adv in a 1:1 ratio hydrogel recruited macrophage population with enhanced M2-type macrophage polarization, suggesting a positive effect of inflammatory response on angiogenesis. In conclusion, these data suggest that the composite hydrogels of DAT with SIS or Adv in 1:1 ratio have apparent pro-adiogenic and angiogenic abilities, thus providing a promising cell-free tissue engineering biomaterial with broad clinical applications. STATEMENT OF SIGNIFICANCE: Decellularized adipose tissue (DAT) has emerged as an important biomaterial in adipose tissue regeneration. Early adipose tissue production and long-term survival is tightly related to the angiogenesis. The revascularization of the DAT is a key issue that needs to be solved in adipose regeneration. In this study, the injectable composite hydrogels were developed by using DAT with Adv (aortic adventitia extravascular matrix) or SIS (small intestinal submucosa) in different ratio. We demonstrated that the combination of DAT with SIS or Adv in 1:1 ratio effectively improved the proliferation of adipose stem cells and endothelial cells, and promoted greater adipose regeneration and tissue vascularization as compared to the DAT scaffold. This study provides the potential biomaterial for clinical soft tissue regeneration.

12.
Genes (Basel) ; 14(8)2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628666

RESUMO

Treatment options for herpesvirus infections that target the interactions between the virus and the host have been identified as promising. Our previous studies have shown that transcription factors p53 and Fos are essential host determinants of gallid alpha herpesvirus 1 (ILTV) infection. The impact of p53 and Fos on ILTV replication has 'not been fully understood yet. Using the sole ILTV-permissive chicken cell line LMH as a model, we examined the effects of hosts p53 and Fos on all phases of ILTV replication, including viral gene transcription, viral genome replication, and infectious virion generation. We achieved this by manipulating the expression of p53 and Fos in LMH cells. Our results demonstrate that the overexpression of either p53 or Fos can promote viral gene transcription at all stages of the temporal cascade of ILTV gene expression, viral genome replication, and infectious virion production, as assessed through absolute quantitative real-time PCR, ILTV-specific RT-qPCR assays, and TCID50 assays. These findings are consistent with our previous analyses of the effects of Fos and p53 knockdowns on virus production and also suggest that both p53 and Fos may be dispensable for ILTV replication. Based on the synergistic effect of regulating ILTV, we further found that there is an interaction between p53 and Fos. Interestingly, we found that p53 also has targeted sites upstream of ICP4, and these sites are very close to the Fos sites. In conclusion, our research offers an in-depth understanding of how hosts p53 and Fos affect ILTV replication. Understanding the processes by which p53 and Fos regulate ILTV infection will be improved by this knowledge, potentially paving the way for the development of novel therapeutics targeting virus-host interactions as a means of treating herpesvirus infections.


Assuntos
Bioensaio , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Galinhas , Interações entre Hospedeiro e Microrganismos
13.
Gerontology ; 69(9): 1137-1146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37276850

RESUMO

INTRODUCTION: Cognitive stimulating activities and a healthy lifestyle are associated with less cognitive impairment. However, whether the association is varied by Apolipoprotein epsilon 4 (APOE ε4) allele carrier status remains inconclusive. We aimed to investigate whether the association of cognitively stimulating activities and a healthy lifestyle with the risk of cognitive impairment varied by APOE ε4 allele carrier status. METHODS: A case-control study was conducted for adults aged 60 years and above. Six province administrative units (Beijing, Shanghai, Hubei, Sichuan, Guangxi, and Yunnan) were included using stratified multistage cluster sampling. A total of 1,300 individuals were identified with cognitive impairment (cases) at enrollment and were matched 1:2 on sex, age (±2 years), and residential district with controls who were cognitively normal at the time of the evaluation. We used a standardized questionnaire to collect information on cognitive stimulating activities, lifestyle factors, demographics, and comorbidity. Cognitive stimulating activities included reading books or newspapers, playing cards or mahjong, using the Internet, socializing with neighbors, and community activities. Lifestyle factors included smoking, alcohol drinking, daily tea drinking, and regular exercise. We used logistic regression to assess the interaction between cognitive stimulating activities, lifestyle factors, and APOE ε4 allele carrier status (yes/no) on the risk of cognitive impairment. We tested for additive interaction by estimating relative excess risk (RERI) due to interaction and multiplicative interaction employing the p value of the interaction term of each lifestyle factor and APOE ε4 into the model. RESULTS: Four cognitive stimulating activities were associated with less cognitive impairment regardless of APOE ε4 status. Using the Internet (odds ratio [OR]: 0.53, 95% confidence interval [CI]: 0.30-0.95), daily tea drinking (OR: 0.79; 95% CI: 0.63-0.98), and regular exercise (OR: 0.78; 95% CI: 0.65-0.94) were associated with less cognitive impairment only in noncarriers. Multiplicative and additive interactions were found between community activities and APOE ε4 carrier status (multiplicative p value = 0.03; RERI 0.738, 95% CI: 0.201-1.275). CONCLUSION: The associations between cognitive activities and cognitive impairment were robust regardless of the APOE ε4 carrier status, while the associations between lifestyle factors and cognitive impairment varied by APOE ε4 carrier status.


Assuntos
Apolipoproteína E4 , Disfunção Cognitiva , Humanos , Apolipoproteína E4/genética , Estudos de Casos e Controles , China/epidemiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Genótipo , Estilo de Vida Saudável , Cognição , Chá
14.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241927

RESUMO

Electrospun fibers containing levocetirizine, a BCS III drug, were prepared from three water-soluble polymers, hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA). Fiber-spinning technology was optimized for each polymer separately. The polymers contained 10 wt% of the active component. An amorphous drug was homogeneously distributed within the fibers. The solubility of the drug in the polymers used was limited, with a maximum of 2.0 wt%, but it was very large in most of the solvents used for fiber spinning and in the dissolution media. The thickness of the fibers was uniform and the presence of the drug basically did not influence it at all. The fiber diameters were in the same range, although somewhat thinner fibers could be prepared from PVA than from the other two polymers. The results showed that the drug was amorphous in the fibers. Most of the drug was located within the fibers, probably as a separate phase; the encapsulation efficiency proved to be 80-90%. The kinetics of the drug release were evaluated quantitatively by the Noyes-Whitney model. The released drug was approximately the same for all the polymers under all conditions (pH), and it changed somewhere between 80 and 100%. The release rate depended both on the type of polymer and pH and varied between 0.1 and 0.9 min-1. Consequently, the selection of the carrier polymer allowed for the adjustment of the release rate according to the requirements, thus justifying the use of electrospun fibers as carrier materials for levocetirizine.


Assuntos
Polímeros , Água , Polímeros/metabolismo , Liberação Controlada de Fármacos , Cetirizina , Solubilidade , Álcool de Polivinil , Portadores de Fármacos
15.
Environ Sci Pollut Res Int ; 30(29): 73702-73713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37195608

RESUMO

Heavy metals in reservoir sediments were analyzed to assess the pollution level and to understand the potential risk on water supply safety. Heavy metals in sediments will enter the biological chain through bio-enrichment and bio-amplification in water and eventually pose a threat to the safety of drinking water supply. Analysis of eight sampling sites in JG (Jian gang) drinking water reservoir of the sediments showed that from Feb 2018 to Aug 2019 heavy metals including Pb, Ni, Cu, Zn, Mo, and Cr increased by 1.09-17.2%. Vertical distributions of heavy metals indicated that the concentrations increased gradually by 9.6-35.8%. Risk assessment code analysis indicated that Pb, Zn, and Mo were of high risk in the main reservoir area. What is more, enrichment factors of Ni and Mo were 2.76-3.81 and 5.86-9.41, respectively, showing the characteristics of exogenous input. The continuous monitoring results of the bottom water showed that the concentration of heavy metals in the bottom water exceeded the environmental quality standard value of surface water in China, and exceeded the standard by 1.76 times (Pb), 1.43 times (Zn), and 2.04 times (Mo), respectively. Heavy metals in the sediments of JG Reservoir, especially in the main reservoir area, have a potential risk of release from the sediment to the overlying water. Water supply reservoir as a source of drinking water, its quality is directly related to human health and production activities. Therefore, this first study on JG Reservoir is of great significance for the protection of drinking water safety and human health.


Assuntos
Água Potável , Metais Pesados , Poluentes Químicos da Água , Humanos , Água Potável/análise , Monitoramento Ambiental/métodos , Chumbo/análise , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Abastecimento de Água , China , Medição de Risco
16.
J Colloid Interface Sci ; 643: 613-625, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37003868

RESUMO

In this study, free-standing Co3O4-CuO/CF electrodes are synthesized via an electrodeposition-annealing process and then protected by dip-coated carbon nanotubes (CNTs). The obtained Co3O4-CuO@CNTs/CF is employed as cathode to activate peroxymonosulfate (PMS) for the degradation of Bisphenol A (BPA) in an electrochemical system. The electrochemical assistant (EA) plays a critical role to accelerate metal redox by donating electrons sustainably, and the fast regeneration of Co2+/Cu+ could be achieved to promote chemical-catalysis for PMS activation, which is proved via the pre-electroreduction treatment. The rate constant of Co3O4-CuO@CNTs/CF/PMS system with EA is âˆ¼ 4.4 times compared to the system without EA. It also exhibits an excellent stability, which could still remove over 90% of BPA after eight cycles in 45 min. In addition, the coating of CNTs could decrease leaching of metals effectively. According to quenching tests and electron spin-resonance spectroscopy (ESR), the presence of EA could enhance the radical route by producing more SO4•- and •OH greatly, which is also proved by much faster degradation of carbamazepine (CBZ) and atrazine (ATZ) than that without EA. This work reveals activation mechanism of PMS in the electrochemical system, and provides an effective strategy to achieve the fast metal redox cycle for effective and long-term pollutant degradation.

17.
Arch Osteoporos ; 18(1): 32, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786951

RESUMO

Famine exposure in early life has been found to have a long-term effect on metabolic diseases, but its effect on bone health was not clear. In this study, we found women, who suffered from famine exposure during their childhood or adolescence period, had significantly decreased BMD at several skeletal sites compared to the age-matched non-exposed groups. The risk of clinical fracture was also elevated in adolescence-exposed women. PURPOSE: To investigate the correlation between famine exposure at certain stages and bone mass in adulthood. METHODS: We enrolled participants born in 1943-1962 from the China Osteoporosis Prevalence Study (COPS), which were classified into three famine exposure groups according to their birth year: fetal-famine exposure (1959-1962, n = 1693), childhood-famine exposure (1949-1958, n = 5557), and adolescence-famine exposure (1943-1948, n = 1530). We also selected age-balanced non-exposed participants as the control groups for men and women separately. Bone mineral density (BMD) and vertebral fractures (VFs) were measured by dual X-ray absorptiometry (DXA) and X-ray, respectively. The associations of famine exposure in early life with BMD were assessed via multiple linear regression. Logistic regression was performed to examine the association of famine exposure in early life with fracture risk with adjustments for covariates. RESULTS: In women, the childhood-exposed and adolescence-exposed groups had significantly decreased BMD at several skeletal sites compared to the age-matched non-exposed groups. No significant decreased BMD was found in the fetal-exposed groups compared to the non-exposed groups in both sexes. Multiple linear regression analysis showed that famine exposure during childhood and adolescence was negatively associated with BMD at the femoral neck after adjusting for covariates in women. The risk of clinical fracture was also elevated in adolescence-exposed women. CONCLUSION: Famine exposure during early life especially childhood and adolescence is associated with decreased bone mass in adulthood in women but did not affect bone mass in men.


Assuntos
Fraturas Ósseas , Osteoporose , Masculino , Adolescente , Humanos , Feminino , Idoso de 80 Anos ou mais , Fome Epidêmica , Densidade Óssea , Osteoporose/epidemiologia , Absorciometria de Fóton , Modelos Logísticos , China/epidemiologia , Fatores de Risco
18.
Proc Natl Acad Sci U S A ; 120(10): e2217199120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848564

RESUMO

COVID-19 remains a global pandemic of an unprecedented magnitude with millions of people now developing "COVID lung fibrosis." Single-cell transcriptomics of lungs of patients with long COVID revealed a unique immune signature demonstrating the upregulation of key proinflammatory and innate immune effector genes CD47, IL-6, and JUN. We modeled the transition to lung fibrosis after COVID and profiled the immune response with single-cell mass cytometry in JUN mice. These studies revealed that COVID mediated chronic immune activation reminiscent to long COVID in humans. It was characterized by increased CD47, IL-6, and phospho-JUN (pJUN) expression which correlated with disease severity and pathogenic fibroblast populations. When we subsequently treated a humanized COVID lung fibrosis model by combined blockade of inflammation and fibrosis, we not only ameliorated fibrosis but also restored innate immune equilibrium indicating possible implications for clinical management of COVID lung fibrosis in patients.


Assuntos
COVID-19 , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/etiologia , Síndrome de COVID-19 Pós-Aguda , Antígeno CD47 , Interleucina-6/genética , Imunidade Inata
19.
Amino Acids ; 55(3): 403-412, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648538

RESUMO

L-Tryptophan (Trp) was shown to improve the gut barrier and growth of weaning piglets. However, whether excessive dietary Trp regulates amino acids (AAs) metabolism and gut serotonin (5-HT) homeostasis in piglets with gut inflammation is not clear yet. We hypothesize that excessive dietary Trp alleviates acetate-induced colonic inflammation and gut barrier damage in weaning piglets partially through the regulation of colonic AAs metabolism and 5-HT signaling. Fifty-four 21-day-old weaned piglets were divided into six groups: control, acetate, 0.2%Trp, 0.2%Trp + acetate, 0.4% Trp, and 0.4%Trp + acetate. Piglets were fed a basal diet supplemented with 0%, 0.2%, or 0.4% of Trp throughout the 12-day experiment. During days 0-7, all piglets had free access to diet and drinking water. On day 8, piglets were intrarectal administered with 10 mL of 10% acetate saline solution or 0.9% saline. During days 8-12, all piglets were pair-fed the same amount of feed per kg bodyweight. Results showed that excessive dietary Trp alleviated acetate-induced reductions in daily weight gain and increase in feed/gain ratio. Trp restored (P < 0.05) acetate-induced increase in concentrations of free aspartate, glutamate/glutamine, glycine, 5-HT, and 3-methylindole in the colon, downregulation of zonula occludens-1 and 5-HT reuptake transporter (SERT) expression and upregulation of IL-1ß, IL-8, TLR4, and 5-HT receptor 2A (HTR2A) expression, and the increase in ratios of p-STAT3/ STAT3 and p-p65/p65 in the colon. The above findings suggested that excessive dietary Trp in the proper amount regulated colonic AAs metabolism, 5-HT homeostasis, and signaling that may contribute as important regulators of gut inflammation during the weaning transition.


Assuntos
Serotonina , Triptofano , Animais , Suínos , Triptofano/farmacologia , Serotonina/metabolismo , Desmame , Dieta , Suplementos Nutricionais , Inflamação/induzido quimicamente , Colo/metabolismo , Ração Animal/análise
20.
J Med Virol ; 95(2): e28478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609964

RESUMO

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Assuntos
COVID-19 , Linfopenia , Animais , Camundongos , SARS-CoV-2/metabolismo , Antígeno B7-H1 , Evasão da Resposta Imune , NF-kappa B/metabolismo , Regulação para Cima , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA