Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402402, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949051

RESUMO

Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.

2.
J Colloid Interface Sci ; 673: 19-25, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870664

RESUMO

Developing highly active and durable non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER) is crucial in achieving efficient energy conversion. Herein, we reported a CoNiAl0.5O/NF nanofilament that exhibits higher OER activity than previously reported IrO2-based catalysts in alkaline solution. The as-synthesized CoNiAl0.5O/NF catalyst demonstrates a low overpotential of 230 mV at a current density of 100 mA cm-2, indicating its high catalytic efficiency. Furthermore, the catalyst exhibits a Tafel slope of 26 mV dec-1, suggesting favorable reaction kinetics. The CoNiAl0.5O/NF catalyst exhibits impressive stability, ensuring its potential for practical applications. Detailed characterizations reveal that the enhanced activity of CoNiAl0.5O/NF can be attributed to the electronic modulation achieved through Al3+ incorporation, which promotes the emergence of higher-valence Ni metal, facilitating nanofilament formation and improving mass transport and charge transfer processes. The synergistic effect between nanofilaments and porous nickel foam (NF) substrate significantly enhances the electrical conductivity of this catalyst material. This study highlights the significance of electronic structures for improving the activity of cost-effective and non-precious metal-based electrocatalysts for the OER.

3.
Adv Sci (Weinh) ; 7(5): 1902547, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154071

RESUMO

Potassium-ion batteries (PIBs) are considered as promising candidates for lithium-ion batteries due to the abundant reserve and lower cost of K resources. However, K+ exhibits a larger radius than that of Li+, which may impede the intercalation of K+ into the electrode, thus resulting in poor cycling stability of PIBs. Here, an N/O dual-doped hard carbon (NOHC) is constructed by carbonizing the renewable piths of sorghum stalks. As a PIB anode, NOHC presents a high reversible capacity (304.6 mAh g-1 at 0.1 A g-1 after 100 cycles) and superior cycling stability (189.5 mAh g-1 at 1 A g-1 after 5000 cycles). The impressive electrochemical performances can be ascribed to the super-stable porous structure, expanded interlayer space, and N/O dual-doping. More importantly, the NOHC can be prepared in large scale in a concise way, showing great potential for commercialization applications. This work may impel the development of low-cost and sustainable carbon-based materials for PIBs and other advanced energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA