Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Pineal Res ; 68(3): e12631, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943334

RESUMO

In the elderly with atherosclerosis, hypertension and diabetes, vascular calcification and ageing are ubiquitous. Melatonin (MT) has been demonstrated to impact the cardiovascular system. In this study, we have shown that MT alleviates vascular calcification and ageing, and the underlying mechanism involved. We found that both osteogenic differentiation and senescence of vascular smooth muscle cells (VSMCs) were attenuated by MT in a MT membrane receptor-dependent manner. Moreover, exosomes isolated from VSMCs or calcifying vascular smooth muscle cells (CVSMCs) treated with MT could be uptaken by VSMCs and attenuated the osteogenic differentiation and senescence of VSMCs or CVSMCs, respectively. Moreover, we used conditional medium from MT-treated VSMCs and Transwell assay to confirm exosomes secreted by MT-treated VSMCs attenuated the osteogenic differentiation and senescence of VSMCs through paracrine mechanism. We also found exosomal miR-204/miR-211 mediated the paracrine effect of exosomes secreted by VSMCs. A potential target of these two miRs was revealed to be BMP2. Furthermore, treatment of MT alleviated vascular calcification and ageing in 5/6-nephrectomy plus high-phosphate diet-treated (5/6 NTP) mice, while these effects were partially reversed by GW4869. Exosomes derived from MT-treated VSMCs were internalised into mouse artery detected by in vivo fluorescence image, and these exosomes reduced vascular calcification and ageing of 5/6 NTP mice, but both effects were largely abolished by inhibition of exosomal miR-204 or miR-211. In summary, our present study revealed that exosomes from MT-treated VSMCs could attenuate vascular calcification and ageing in a paracrine manner through an exosomal miR-204/miR-211.


Assuntos
Melatonina/farmacologia , MicroRNAs/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Calcificação Vascular/metabolismo , Envelhecimento , Animais , Diferenciação Celular/efeitos dos fármacos , Exossomos/química , Exossomos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/fisiopatologia
2.
Aging (Albany NY) ; 11(14): 5232-5245, 2019 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-31352437

RESUMO

Cortisol-producing adenoma (CPA) is the main cause of Adrenal Cushing syndrome. However, its molecular mechanism is not fully understood. Previous study revealed Synaptophysin (SYP) is ubiquitously expressed in adrenocortical tumors, but its function in CPA still need to be discovered. In the present study we determine the molecular mechanism involved in SYP dysregulation in CPA and how SYP affects the secretion of cortisol in CPA. Our results showed that aberrant DNA methylation of SYP is involved in CPA progress. Using a miRNA microarray and qRT-PCR, we found decreased expression of miR-27a-5p in CPA compared with normal adrenal tissue. Moreover, the expression of TET3, the target gene of miR-27a-5p, increased in CPA compared with normal adrenal tissue. Knock-down of TET3 resulted in hypermethylation of SYP which reducing the expression level of SYP in H295R cells. The miR-27a-5p-TET3-SYP signalling pathway may regulate proliferation and cortisol secretion in H295R cells and, thus, play a key role in CPA development.


Assuntos
Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Metilação de DNA , Hidrocortisona/metabolismo , Sinaptofisina/genética , Adulto , Linhagem Celular Tumoral , Dioxigenases/genética , Feminino , Técnicas de Silenciamento de Genes , Marcação de Genes , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Transdução de Sinais , Regulação para Cima
3.
Aging (Albany NY) ; 11(10): 3182-3197, 2019 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-31129659

RESUMO

Vascular calcification is one of the most important factors for cardiovascular and all-cause mortality in patients with end-stage renal diseases (ESRD). The current study was aimed to investigate the function and mechanisms of miR-34b on the calcification of vascular smooth muscle cells (VSMCs) both in vitro and in vivo. We found that the expression of miR-34b was significantly suppressed in VSMCs with high inorganic phosphate (Pi) treatment, as well as mouse arteries derived from 5/6 nephrectomy with a high-phosphate diet (0.9% Pi, 5/6 NTP) and human renal arteries from uraemia patients. Overexpression of miR-34b alleviated calcification of VSMCs, while VSMCs calcification was enhanced by inhibiting the expression of miR-34b. Bisulphite sequencing PCR (BSP) uncovered that CpG sites upstream of miR-34b DNA were hypermethylated in calcified VSMCs and calcified arteries due to 5/6 NTP, as well as calcified renal arterial tissues from uraemia patients. Meantime, increased DNA methyltransferase 3a (DNMT3a) resulted in the hypermethylation of miR-34b in VSMCs, while 5-aza-2'-deoxycytidine (5-aza) reduced the methylation rate of miR-34b and restored the expression of miR-34b in VSMCs. When DNMT3a was knocked down using DNMT3a siRNA, the effect of 3.5 mM of Pi on calcification of VSMCs was abrogated. In addition, Notch1 was validated as the functional target of miR-34b and involved in the process of calcification of VSMCs. Taken together, our data showed a specific role for miR-34b in regulating calcification of VSMCs both in vitro and in vivo, which was regulated by upstream DNA methylation of miR-34b and modulated by the downstream target gene expression, Notch1. These results suggested that modulation of miR-34b may offer new insight into a novel therapeutic approach for vascular calcification.


Assuntos
Metilação de DNA , MicroRNAs/metabolismo , Receptor Notch1/metabolismo , Calcificação Vascular/metabolismo , Animais , Diferenciação Celular , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Humanos , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteoblastos , Artéria Renal/metabolismo , Uremia/metabolismo
4.
Endocr Relat Cancer ; 26(5): 525-538, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870812

RESUMO

Tumour-derived exosomes under hypoxic conditions contain informative miRNAs involved in the interaction of cancer and para-carcinoma cells, thus contributing to tissue remodelling of the tumour microenvironment (TME). Exosomes isolated from hypoxic papillary thyroid cancer cells, BCPAP cells and KTC-1 cells enhanced the angiogenesis of human umbilical vein endothelial cells (HUVECs) compared with exosomes isolated from normal thyroid follicular cell line (Nthy-ori-3-1), normoxic BCPAP or KTC-1 cells both in vitro and in vivo. miR-21-5p was significantly upregulated in exosomes from papillary thyroid cancer BCPAP cells under hypoxic conditions, while the exosomes isolated from hypoxic BCPAP cells with knockdown of miR-21-5p attenuated the promoting effect of angiogenesis. In addition, our experiment revealed that miR-21-5p directly targeted and suppressed TGFBI and COL4A1, thereby increasing endothelial tube formation. Furthermore, elevated levels of exosomal miR-21-5p are found in the sera of papillary thyroid cancer patients, which promote the angiogenesis of HUVECs. Taken together, our study reveals the cell interaction between hypoxic papillary thyroid cancer cells and endothelial cells, elucidating a new mechanism by which hypoxic papillary thyroid cancer cells increase angiogenesis via exosomal miR-21-5p/TGFBI and miR-21-5p/COL4A1 regulatory pathway.


Assuntos
Biomarcadores Tumorais/sangue , Exossomos/metabolismo , MicroRNAs/sangue , Neovascularização Patológica/patologia , Câncer Papilífero da Tireoide/irrigação sanguínea , Neoplasias da Glândula Tireoide/irrigação sanguínea , Microambiente Tumoral , Animais , Estudos de Casos e Controles , Proliferação de Células , Colágeno Tipo IV/sangue , Proteínas da Matriz Extracelular/sangue , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hipóxia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Prognóstico , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Med Rep ; 19(5): 3807-3814, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896834

RESUMO

MicroRNAs (miRNAs) are novel key regulators of cellular differentiation. miR­124 has been reported to regulate osteogenic differentiation of bone marrow­derived mesenchymal stem cells (BMSCs). However, the specific mechanisms involved have not yet been fully elucidated. The present study aimed to investigate the effect of miR­124 on osteogenic differentiation of BMSCs and its underlying mechanisms. In the present study, it was found that alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and the protein levels of osterix (Sp7) and runt­related transcription factor 2 (Runx2) were significantly increased, whereas the expression of miR­124 was decreased in a time­dependent manner during osteogenic differentiation of BMSCs. Following overexpression of miR­124 via transfection of miR­124 mimics in BMSCs, Runx2 protein expression and ALP activity were significantly decreased. By contrast, inhibition of miR­124 expression led to an increase in ALP activity and Runx2 expression. Sp7 expression was suppressed in BMSCs transfected with miR­124 mimics while increased when miR­124 expression was inhibited, indicating that miR­124 regulates the expression of Sp7. Moreover, a luciferase reporter assay further verified that Sp7 is the direct target of miR­124. Finally, the effect of miR­124 inhibitor on promoting the differentiation of BMSCs was abolished following treatment with a small interfering RNA targeting Sp7. Taken together, the present study demonstrates that miR­124 inhibits the osteogenic differentiation of BMSCs by targeting Sp7.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteogênese , Fator de Transcrição Sp7/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição Sp7/genética
6.
ACS Appl Mater Interfaces ; 10(28): 24249-24257, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29939714

RESUMO

Compared to the many studies that focus on the development of novel molecular frameworks pertaining to functionalized fluorescent materials, there is lesser emphasis on side chains even though they have a significant impact on the properties and applications of fluorescent materials. In this study, a series of pyridinium-functionalized tetraphenylethene salts (TPEPy-1 to TPEPy-4) possessing different alkyl chains are synthesized, and the influence of chain length on their optical performance and applications is thoroughly investigated. By changing the alkyl chain, the fluorogens exhibit opposite emission behavior in aqueous media because of their distinct hydrophobic nature, and their solid-state emission can be fine-tuned from green to red owing to their distinct molecular configuration. In addition, by increasing the chain length, the microstructure of the self-assembled fluorogens converts from microplates to microrods with various emission colors. Moreover, TPEPy-1 exhibits dual-mode fluorescence "turn-on" response toward NO3- and ClO4- in aqueous media because the anions induce the self-assembly of fluorogens. Furthermore, the fluorogens display cellular uptake selectivity while the proper alkyl chain impels the fluorogens to penetrate the cell membrane and accumulate in the mitochondria with high specificity.

7.
Endocrinology ; 159(8): 2905-2916, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850805

RESUMO

Arterial calcification is a common cardiovascular disease that initiates from a process of osteoblastic differentiation of vascular smooth muscle cells (VSMCs). Accumulating evidence has demonstrated that microRNAs play an important role in regulating arterial calcification. miR-204 was significantly downregulated in calcified human renal arteries from patients with uremia; calcified arteries of mice, due to 5/6 nephrectomy with a high-phosphate diet (5/6 NTP); and in VSMCs induced by high phosphate concentration. The overexpression of miR-204 alleviated the osteoblastic differentiation of VSMCs. Bisulphite sequencing PCR revealed that CpG sites upstream of miR-204 DNA were hypermethylated in calcified VSMCs; in calcified arteries of mice, due to 5/6 NTP; and in calcified renal artery tissues from patients with uremia. Moreover, increased DNMT3a resulted in the hypermethylation of miR-204 in high phosphate concentration-induced VSMCs, whereas 5-aza-2'-deoxycytidine could restore the expression of miR-204 in high phosphate concentration-induced VSMCs. Moreover, we found that DNMT3a was the target of miR-204, and the methylation ratio of miR-204 was decreased significantly, meaning that the expression of miR-204 was restored when DNMT3a was knocked down by using DNMT3a small interfering RNA, resulting in abrogation of the effect of high phosphate concentration on VSMC calcification. The progress of arterial calcification is regulated by the miR-204/DNMT3a regulatory circuit.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Renal/metabolismo , Calcificação Vascular/metabolismo , Adulto , Animais , Aorta/citologia , Estudos de Casos e Controles , Ilhas de CpG , Metilação de DNA , DNA Metiltransferase 3A , Regulação para Baixo , Feminino , Expressão Gênica , Humanos , Técnicas In Vitro , Falência Renal Crônica/metabolismo , Falência Renal Crônica/cirurgia , Transplante de Rim , Doadores Vivos , Masculino , Metilação , Camundongos , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Nefrectomia , Osteoblastos , Fosfatos/metabolismo , Artéria Renal/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Uremia/metabolismo
8.
Oncol Lett ; 14(5): 5457-5463, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29098035

RESUMO

Mammalian sterile 20-like kinase 1 (Mst1) is a major inhibitor of cell proliferation, and is involved in apoptosis, oncogenesis and organ growth via its ubiquitously encoded serine threonine kinase. Previous studies have demonstrated that Mst1 has a tumor suppressor function in human breast cancer. Mst1 deletion or mutation is associated with tumorigenesis, whereas Mst1 overexpression leads to tumor cell apoptosis and decreases proliferation of tumor cells. Our previous study reported the tumor suppressive function of Mst1, and debated Mst1 as a prognostic factor in human breast cancer. In the present study, Mst1 levels were measured in the plasma of patients in order to elucidate their association with overall and disease-free survival. The results of the present study indicated that Mst1 is a strong prognostic and predictive factor in human breast cancer and a promising anticancer target.

9.
Sci Rep ; 7(1): 3549, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615727

RESUMO

Arterial calcification is a major complication of cardiovascular disease. Oestrogen replacement therapy in postmenopausal women is associated with lower levels of coronary artery calcification, but its mechanism of action remains unclear. Here, we show that oestrogen inhibits the osteoblastic differentiation of vascular smooth muscle cells (VSMCs) in vitro and arterial calcification in vivo by promoting autophagy. Through electron microscopy, GFP-LC3 redistribution, and immunofluorescence analyses as well as measurement of the expression of the autophagosome marker light-chain I/II (LC3I/II) and autophagy protein 5 (Atg5), we show that autophagy is increased in VSMCs by oestrogen in vitro and in vivo. The inhibitory effect of oestrogen on arterial calcification was counteracted by 3-methyladenine (3MA) or knockdown of Atg5 and was increased by rapamycin. Furthermore, the inhibitory effect of oestrogen on arterial calcification and the degree of autophagy induced by oestrogen were blocked by a nonselective oestrogen receptor (ER) antagonist (ICI 182780), a selective oestrogen receptor alpha (ERα) antagonist (MPP), and ERα-specific siRNA. Our data indicate that oestrogen inhibits the osteoblastic differentiation of VSMCs by promoting autophagy through the ERα signalling pathway in vitro and arterial calcification in vivo by increasing autophagy. Our findings provide new insights into the mechanism by which oestrogen contributes to vascular calcification in vitro and in vivo.


Assuntos
Artérias/efeitos dos fármacos , Artérias/patologia , Autofagia , Calcinose/tratamento farmacológico , Estrogênios/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia
10.
Endocrinology ; 155(2): 558-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24248461

RESUMO

Arterial calcification is a complex and active regulated process, which results from a process of osteoblastic differentiation of vascular smooth muscle cells (VSMCs). Leptin, the product of the ob gene, mainly regulates food intake and energy expenditure and recently has been considered to be correlated with the arterial calcification. However, the mechanisms of the effects of leptin on osteoblastic differentiation of VSMCs are unknown. We used calcifying vascular smooth muscle cells (CVSMCs) as a model to investigate the relationship between leptin and the osteoblastic differentiation of CVSMCs and the signaling pathways involved. Our experiments demonstrated that leptin could increase expression of receptor activator of nuclear factor-κB ligand (RANKL) and bone morphogenetic protein 4 (BMP4), as well as alkaline phosphatase (ALP) activity, runt-related transcription factor 2 expression, calcium deposition, and the formation of mineralized nodules in CVSMCs. Suppression of RANKL with small interfering RNA abolished the leptin-induced ALP activity and BMP4 expression in CVSMCs. Leptin could activate the ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Furthermore, pretreatment with the ERK inhibitor PD98059 and the PI3K inhibitor LY294002 abolished leptin-induced RANKL expression and blocked the promotion of ALP activity of CVSMCs. Silencing of the leptin receptor OB-Rb with small interfering RNA abolished leptin-induced activation of ERK and Akt and the expression of RANKL and reversed the effects of leptin on ALP activity. Meanwhile, addition of Noggin (the BMP4 inhibitor) blunted the effect of leptin on ALP activity. These results show that leptin can promote osteoblastic differentiation of CVSMCs by the OB-Rb/ERK1/2/RANKL-BMP4 and OB-Rb/PI3K/Akt/RANKL-BMP4 pathways.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Leptina/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Osteoblastos/citologia , Ligante RANK/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Calcinose/metabolismo , Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ligante RANK/genética , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
11.
Toxicol Appl Pharmacol ; 272(3): 591-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23921150

RESUMO

Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus-pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways.


Assuntos
Apoptose/fisiologia , Grelina/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Osteoblastos/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Células 3T3 , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Osteoblastos/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia
12.
Int J Endocrinol ; 2013: 786574, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843790

RESUMO

Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs) apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10(-10)-10(-6) M puerarin and reached the maximal antiapoptotic effect at the concentration of 10(-8) M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10(-7) M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

13.
Endocrinology ; 154(9): 3344-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798596

RESUMO

Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with ß-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.


Assuntos
Transdiferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Osteoblastos/metabolismo , Calcificação Vascular/metabolismo , Regiões 3' não Traduzidas/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Inativação Gênica , Genes Reporter/efeitos dos fármacos , Glicerofosfatos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Mutação , Oligonucleotídeos Antissenso/efeitos adversos , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteocalcina/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
14.
Int J Endocrinol ; 2013: 368970, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23606838

RESUMO

It has been presumed that adipokines deriving from adipose tissue may play important roles in bone metabolism. Omentin-1, a novel adipokine, which is selectively expressed in visceral adipose tissue, has been reported to stimulate proliferation and inhibit differentiation of mouse osteoblast. However, little information refers to the effect of omentin-1 on human osteoblast (hOB) proliferation. The current study examined the potential effects of omentin-1 on proliferation in hOB and the signal pathway involved. Omentin-1 promoted hOB proliferation in a dose-dependent manner as determined by [(3)H]thymidine incorporation. Western blot analysis revealed that omentin-1 induced activation of Akt (phosphatidylinositol-3 kinase downstream effector) and such effect was impeded by transfection of hOB with Akt-siRNA. Furthermore, LY294002 (a selective PI3K inhibitor) and HIMO (a selective Akt inhibitor) abolished the omentin-1-induced hOB proliferation. These findings indicate that omentin-1 induces hOB proliferation via the PI3K/Akt signaling pathway and suggest that osteoblast is a direct target of omentin-1.

15.
J Photochem Photobiol B ; 118: 58-65, 2013 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-23218540

RESUMO

Photochemical properties and phototoxicity of Pazufloxacin (PAX) were systematically investigated in aqueous solutions using UV-Vis, fluorescence, laser flash photolysis, pulse radiolysis and SDS-PAGE gel electrophoresis techniques. PAX triplet-state ((3)PAX(*)) absorption spectra (λ(max)=570 nm) was determined. (3)PAX(*) was quenched by PAX and O(2), with rate constants of 6.9×10(8) and 3.2×10(8) dm(3) mol(-1) s(-1), respectively. The pK(a) values (5.7 and 8.6) for the protonation equilibrium were determined by UV-Vis and fluorescence techniques. The PAX triplet energy (E(T)=260.3 kJ/mol) was obtained using energy transfer method. The reaction of electron transfer from tryptophan (TrpH) and dGMP to (3)PAX(*) was found with rate constants of 8.8×10(7) and 8.7×10(6) dm(3) mol(-1) s(-1), respectively. The rate constants for reactions of ()OH, SO(4)(-) and hydrated electron with PAX were found to be 5.8×10(8), 2.1×10(9) and 9×10(9)d m(3) mol(-1) s(-1), respectively. Based on the results obtained, a rational scheme for dGMP, TrpH and lysozyme photodamage induced by PAX was proposed.


Assuntos
Fluoroquinolonas/química , Fluoroquinolonas/efeitos da radiação , Oxazinas/química , Oxazinas/efeitos da radiação , Nucleotídeos de Desoxiguanina/química , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Fluoroquinolonas/toxicidade , Lasers , Muramidase/efeitos dos fármacos , Oxazinas/toxicidade , Processos Fotoquímicos , Fotólise , Radiólise de Impulso , Triptofano/efeitos dos fármacos
16.
Amino Acids ; 44(3): 961-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23135225

RESUMO

It has been hypothesized that adipocytokines originating from adipose tissue may have an important role in bone metabolism. Vaspin is a novel adipocytokine isolated from visceral white adipose tissue, which has been reported to have anti-apoptotic effects in vascular endothelial cells. However, to the best of our knowledge there is no information regarding the effects of vaspin on osteoblast apoptosis. This study therefore examined the possible effects of vaspin on apoptosis in human osteoblasts (hOBs). Our study established that vaspin inhibits hOBs apoptosis induced by serum deprivation, as determined by ELISA and TUNEL assays. Western blot analysis revealed that vaspin upregulates the expression of Bcl-2 and downregulates that of Bax in a dose-dependent manner. Vaspin stimulated the phosphorylation of ERK, and pretreatment of hOBs with the ERK inhibitor PD98059 blocked the vaspin-induced activation of ERK, however, vaspin did not stimulate the phosphorylation of p38, JNK or Akt. Vaspin protects hOBs from serum deprivation-induced apoptosis, which may be mediated by activating the MAPK/ERK signaling pathway.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Osteoblastos/citologia , Serpinas/metabolismo , Células Cultivadas , Humanos , Osteoblastos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Cardiovasc Res ; 96(2): 320-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22871591

RESUMO

AIMS: Medial artery calcification is a common macroangiopathy that initiates from a cell-regulated process similar to osteogenesis. Although the mechanisms governing this process remain unclear, epigenomic regulation by specific microRNAs might play a role in vascular smooth muscle cell (VSMC) calcification. In this study, we aimed to investigate whether miR-204 participates in the regulation of VSMC calcification. METHODS AND RESULTS: We found that miR-204 was suppressed in mouse aortic VSMCs during ß-glycerophosphate-induced calcification, whereas Runx2 protein levels were elevated. Overexpression of miR-204 by transfection of miR-204 mimics decreased Runx2 protein levels and alleviated ß-glycerophosphate-induced osteoblastic differentiation of VSMCs, whereas miR-204 inhibition by transfection of miR-204 inhibitors significantly elevated Runx2 protein levels and enhanced osteoblastic differentiation of VSMCs, suggesting the role of miR-204 as an endogenous attenuator of Runx2 in VSMC calcification. Luciferase reporter assays revealed Runx2 as the direct target of miR-204 by overexpression of miR-204 on the wild-type or mutant 3'-UTR sequences of Runx2 in VSMCs. In vivo overexpression of miR-204 by injection of miR-204 agomirs in Kunming mice attenuated vitamin D3-induced medial artery calcification. CONCLUSION: Our study has shown that down-regulation of miR-204 may contribute to ß-glycerophosphate-induced VSMC calcification through regulating Runx2. miR-204 represents an important new regulator of VSMC calcification and a potential therapeutic target in medial artery calcification.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Glicerofosfatos/metabolismo , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Osteoblastos/metabolismo , Osteogênese , Regulação para Cima
18.
PLoS One ; 7(4): e33126, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514603

RESUMO

Vascular calcification results from osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and is a major risk factor for cardiovascular events. Ghrelin is a newly discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagog receptor (GHSR). Several studies have identified the protective effects of ghrelin on the cardiovascular system, however research on the effects and mechanisms of ghrelin on vascular calcification is still quite rare. In this study, we determined the effect of ghrelin on osteoblastic differentiation of VSMCs and investigated the mechanism involved using the two universally accepted calcifying models of calcifying vascular smooth muscle cells (CVSMCs) and beta-glycerophosphate (beta-GP)-induced VSMCs. Our data demonstrated that ghrelin inhibits osteoblastic differentiation and mineralization of VSMCs due to decreased alkaline phosphatase (ALP) activity, Runx2 expression, bone morphogenetic protein-2 (BMP-2) expression and calcium content. Further study demonstrated that ghrelin exerted this suppression effect via an extracellular signal-related kinase (ERK)-dependent pathway and that the suppression effect of ghrelin was time dependent and dose dependent. Furthermore, inhibition of the growth hormone secretagog receptor (GHSR), the ghrelin receptor, by siRNA significantly reversed the activation of ERK by ghrelin. In conclusion, our study suggests that ghrelin may inhibit osteoblastic differentiation of VSMCs through the GHSR/ERK pathway.


Assuntos
Grelina/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Amino Acids ; 43(5): 2125-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22532031

RESUMO

Apelin receptor (APJ) deficiency has been reported to be preventive against atherosclerosis. However, the mechanism of this effect remains unknown. In this study, quantitative real-time RT-PCR, Western blotting and ELISA analyses revealed a significant increase in the expression of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) in human umbilical vein endothelial cells (HUVECs) treated with apelin. Inhibitors of cellular signal transduction molecules were used to demonstrate involvement of nuclear factor kappa-B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways in apelin-APJ-induced activation of adhesion molecules and chemokines. Inhibition of APJ expression by RNA interference abrogated apelin-induced expression of adhesion molecules and chemokines and apelin-stimulated cellular signal transduction in HUVECs. The apelin-APJ system in endothelial cells is involved in the expression of adhesion molecules and chemokines, which are important for the initiation of endothelial inflammation-related atherosclerosis. Therefore, apelin-APJ and the cell signaling pathways activated by this system in endothelial cells may represent targets for therapy of atherosclerosis.


Assuntos
Quimiocina CCL2/genética , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Receptores Acoplados a Proteínas G/genética , Molécula 1 de Adesão de Célula Vascular/genética , Apelina , Receptores de Apelina , Western Blotting , Células Cultivadas , Quimiocina CCL2/metabolismo , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
PLoS One ; 6(12): e29037, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194983

RESUMO

Several reports have shown that circulating insulin level is positively correlated with arterial calcification; however, the relationship between insulin and arterial calcification remains controversial and the mechanism involved is still unclear. We used calcifying vascular smooth muscle cells (CVSMCs), a specific subpopulation of vascular smooth muscle cells that could spontaneously express osteoblastic phenotype genes and form calcification nodules, to investigate the effect of insulin on osteoblastic differentiation of CVSMCs and the cell signals involved. Our experiments demonstrated that insulin could promote alkaline phosphatase (ALP) activity, osteocalcin expression and the formation of mineralized nodules in CVSMCs. Suppression of receptor activator of nuclear factor κB ligand (RANKL) with small interfering RNA (siRNA) abolished the insulin-induced ALP activity. Insulin induced the activation of extracellular signal-regulated kinase (ERK)1/2, mitogen-activated protein kinase (MAPK) and RAC-alpha serine/threonine-protein kinase (Akt). Furthermore, pretreatment of human osteoblasts with the ERK1/2 inhibitor PD98059, but not the phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, or the Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO), abolished the insulin-induced RANKL secretion and blocked the promoting effect of insulin on ALP activities of CVSMCs. Recombinant RANKL protein recovered the ALP activities decreased by RANKL siRNA in insulin-stimulated CVSMCs. These data demonstrated that insulin could promote osteoblastic differentiation of CVSMCs by increased RANKL expression through ERK1/2 activation, but not PI3K/Akt activation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Insulina/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Osteoblastos/citologia , Ligante RANK/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Minerais/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA