Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Sci Rep ; 14(1): 11947, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789486

RESUMO

A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Medicina Tradicional Chinesa , Metabolômica , Transcriptoma , Animais , Metabolômica/métodos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Medicina Tradicional Chinesa/métodos , Masculino , Redes Reguladoras de Genes , Ratos , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Síndrome , Ratos Sprague-Dawley
2.
Nat Commun ; 15(1): 3369, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643171

RESUMO

One-unit-cell FeSe films on SrTiO3 substrates are of great interest owing to significantly enlarged pairing gaps characterized by two coherence peaks at ±10 meV and ±20 meV. In-situ transport measurement is desired to reveal novel properties. Here, we performed in-situ microscale electrical transport and combined scanning tunneling microscopy measurements on continuous one-unit-cell FeSe films with twin boundaries. We observed two spatially coexisting superconducting phases in domains and on boundaries, characterized by distinct superconducting gaps ( Δ 1 ~15 meV vs. Δ 2 ~10 meV) and pairing temperatures (Tp1~52.0 K vs. Tp2~37.3 K), and correspondingly two-step nonlinear V ~ I α behavior but a concurrent Berezinskii-Kosterlitz-Thouless (BKT)-like transition occurring at T BKT ~28.7 K. Moreover, the onset transition temperature T c onset ~54 K and zero-resistivity temperature T c zero ~31 K are consistent with Tp1 and T BKT , respectively. Our results indicate the broadened superconducting transition in FeSe/SrTiO3 is related to intrinsic electronic inhomogeneity due to distinct two-gap features and phase fluctuations of two-dimensional superconductivity.

3.
Sci Adv ; 10(11): eadk3126, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489361

RESUMO

Perception of pathogen/microbial-associated molecular patterns (P/MAMPs) by plant cell surface receptors leads to a sustained burst of reactive oxygen species (ROS), a key feature of P/MAMP-triggered immunity (PTI). Here we report that P/MAMP recognition leads to a rapid nitrosative burst, initiating the accumulation of nitric oxide (NO), subsequently leading to S-nitrosylation of the receptor-like cytoplasmic kinase (RLCK), botrytis-induced kinase 1 (BIK1), at Cys80. This redox-based, posttranslational modification, promotes the phosphorylation of BIK1, subsequently resulting in BIK1 activation and stabilization. Further, BIK1 S-nitrosylation increases its physical interaction with RBOHD, the source of the apoplastic oxidative burst, promoting ROS formation. Our data identify mechanistic links between rapid NO accumulation and the expression of PTI, providing insights into plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imunidade Vegetal
4.
J Pain Res ; 17: 1091-1105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510563

RESUMO

Chronic pain (CP) is a leading cause of disability and a potential factor that affects biological processes, family relationships, and self-esteem of patients. However, the need for treatment of CP is presently unmet. Current methods of pain management involve the use of drugs, but there are different degrees of concerning side effects. At present, the potential mechanisms underlying CP are not completely clear. As research progresses and novel therapeutic approaches are developed, the shortcomings of current pain treatment methods may be overcome. In this review, we discuss the retinal photoreceptors and brain regions associated with photoanalgesia, as well as the targets involved in photoanalgesia, shedding light on its potential underlying mechanisms. Our aim is to provide a foundation to understand the mechanisms underlying CP and develop light as a novel analgesic treatment has its biological regulation principle for CP. This approach may provide an opportunity to drive the field towards future translational, clinical studies and support pain drug development.

5.
Nat Biotechnol ; 42(2): 229-242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361054

RESUMO

The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.


Assuntos
Aprendizado de Máquina , Proteínas de Membrana , Microscopia Crioeletrônica/métodos , Proteínas de Membrana/química , Biologia Computacional , Desenvolvimento de Medicamentos
6.
J Chem Theory Comput ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394691

RESUMO

Time-lagged independent component analysis (tICA) and the Markov state model (MSM) have been extensively employed for extracting conformational dynamics and kinetic community networks from unbiased trajectory ensembles. However, these techniques may not be the optimal choice for elucidating transition mechanisms within low-dimensional representations, especially for intricate biosystems. Unraveling the association mechanism in such complex systems always necessitates permutations of several essential independent components or collective variables, a process that is inherently obscure and may require empirical knowledge for selection. To address these challenges, we have implemented an integrated unsupervised dimension reduction model: uniform manifold approximation and projection (UMAP) with hierarchy density-based spatial clustering of applications with noise (HDBSCAN). This approach effectively generates low-dimensional configurational embeddings. The hierarchical application of this architecture, in conjunction with MSM, reveals global kinetic connectivity while identifying local conformational states. Consequently, our methodology establishes a multiscale mechanistic elucidation framework. Leveraging the benefits of the uniform sample distribution and a denoising approach, our model demonstrates robustness in preserving global and local data structures compared to traditional dimension reduction methods in the field of MD analysis area. The interpretability of hyperparameter selection and compatibility with downstream tasks are cross-validated across various simulation data sets, utilizing both computational evaluation metrics and experimental kinetic observables. Furthermore, the predicted Mcl1-BH3 association kinetics (0.76 s-1) is in close agreement with surface plasmon resonance experiments (0.12 s-1), affirming the plausibility of the identified pathway composed of representative conformations. We anticipate that the devised workflow will serve as a foundational framework for studying recognition patterns in complex biological systems. Its contributions extend to the exploration of protein functional dynamics and rational drug design, offering a potent avenue for advancing research in these domains.

7.
Aging (Albany NY) ; 16(3): 2953-2977, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38329443

RESUMO

OBJECTIVE: The extracellular phosphoprotein, secreted phosphoprotein 1 (SPP1), plays a crucial role in various tumors and regulating the immune system. This study aimed to evaluate its prognostic value and relationship to immune infiltration in lung adenocarcinoma (LUAD). METHODS: In the TCGA and GEO datasets, the information on clinic and transcriptome analysis of SPP1 in non-small-cell lung cancer (NSCLC) was examined accordingly. The association of SPP1 expression with overall survival and clinicopathologic characteristics was investigated by univariate and multivariate analysis. CancerSEA database was utilized to investigate the role of SPP1 at the cellular level by single-cell analysis. Additionally, the CIBERSORT algorithm was utilized to assess the correlation among the immune cells that infiltrated. RESULTS: NSCLC tissues exhibited a notable rise in SPP1 expression compared with that of normal tissues. Furthermore, the overexpression of SPP1 was substantially associated with clinicopathological features and unfavorable survival outcomes in individuals with LUAD, whereas no such correlation was observed in lung squamous cell carcinoma. Immune cells that infiltrate tumors and their corresponding genes were associated with SPP1 expression levels in LUAD. CONCLUSIONS: SPP1 is a reliable indicator for assessing LUAD immune infiltration status and prognosis. With this approach, SPP1 can help earlier LUAD diagnosis and act as a possible immunotherapy target.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Osteopontina/genética , Prognóstico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética
8.
Trends Pharmacol Sci ; 45(3): 268-280, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38296675

RESUMO

Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.


Assuntos
Receptores Odorantes , Humanos , Receptores Odorantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Olfato , Descoberta de Drogas , Encéfalo/metabolismo , Proteínas de Neoplasias
10.
Mol Neurobiol ; 61(4): 1990-2005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37837492

RESUMO

Inflammation and immunity play important roles in the pathogenesis of ischemic stroke. This study aimed to explore key regulatory genes in acute ischemic stroke (AIS) and their underlying mechanisms to provide new research targets for the diagnosis and treatment of ischemic stroke. We searched for differentially expressed mRNAs and miRNAs in patients with AIS and healthy populations in GEO databases, constructed a miRNA-mRNA network, and screened key miRNAs using least absolute shrinkage and selection operator regression and the support vector machine-recursive feature elimination model. Correlations between key miRNAs and infiltrating immune cells and inflammatory factors were analyzed using CIBERSORT and immunoassays and verified using clinical experiments. Bioinformatics analysis identified hsa-miR-877-5p as a key regulatory miRNA in AIS that can modulate immune and inflammatory responses. In clinical studies, it was verified by quantitative PCR analysis that the expression of hsa-miR-877-5p in the blood of AIS patients was higher than that of the healthy group. Then, enzyme-linked immunosorbent assay revealed that the expression of IL-23 and TNF-α related to inflammation in AIS patients was higher than that of the healthy. Quantitative PCR further found that the relative mRNA expression of IL-23, CXCR3, and TNF-α in AIS group was higher than that of the healthy group. This study may provide a basis for a more comprehensive understanding of the potential mechanism of the occurrence and development of AIS, and hsa-miR-877-5p and its downstream effectors IL-23, CXCR3, and TNF-α may be potential intervention targets in AIS.


Assuntos
AVC Isquêmico , MicroRNAs , Humanos , Fator de Necrose Tumoral alfa , MicroRNAs/genética , Inflamação , Biologia Computacional , RNA Mensageiro , Interleucina-23
11.
J Biomol Struct Dyn ; : 1-9, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902556

RESUMO

Leucine-rich repeat-containing protein 8 A (LRRC8A) protein is a critical member of volume-regulated anion channels. It plays a critical roles in the regulation of cellular volume and involves in the development of diseases like osteoarthritis. Screening of lead compounds to modulate its function may provide potential therapeutics of related diseases. Here, we employ virtual screening techniques and molecular dynamics (MD) simulation to screen potential inhibitors against LRRC8A. LRRC8A was regarded as the drug target to investigate potential compounds from the ZINC15 database via molecular docking. The final compound was selected among the top 10 Autodock Vina score (-8.8 Kcal/mol) with the ZINC ID ZINC000018195627 after druggability prediction. The docked complex from the virtual screening was subjected to MD simulation to analyze the stability of the LRRC8A protein-ligand complex, with parameters including root mean square deviation, root mean square fluctuation and radius of gyration. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method was further employed to predict the binding free energies from MD simulation trajectory. Our study provides insightful analysis for the potential compound to modulate LRRC8A and lay the foundation of therapeutics development against osteoarthritis.Communicated by Ramaswamy H. Sarma.

12.
J Tradit Complement Med ; 13(5): 417-429, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693094

RESUMO

Background: The Ze-Qi decoction (ZQD) is a traditional Chinese herbal formula commonly applied to treat lung cancer in China. This study aimed to assess the effective ingredients and molecular mechanisms of ZQD in treating non-small cell lung cancer (NSCLC) based on network pharmacology combined with experimental validation. Methods: Network pharmacology, bioinformatics, and molecular docking analyses were conducted to explore the mechanism of ZQD for treating NSCLC, which was further confirmed by animal experiments. Results: In total, 117 bioactive ingredients and 499 target proteins of ZQD were identified. Network pharmacology revealed 7 core active ingredients and 74 core target proteins. Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the PI3K/Akt and p53 signaling pathways may be crucial in NSCLC treatment. Molecular docking analysis revealed that the seven crucial bioactive ingredients complexed with PI3K, Akt, and p53. The animal experiment results validated that ZQD treatment promoted cell apoptosis and cell cycle arrest, thereby inhibiting NSCLC growth and metastasis. Furthermore, ZQD treatment caused a significant increase in p53 and Bax, while leading to a distinct reduction in p-PI3K (Tyr317), p-Akt (Ser473), VEGFA, CD31, MMP2, MMP9, Bcl2, and CDK2. Conclusions: ZQD inhibited the growth and metastasis of NSCLC subcutaneous tumors in C57BL/6J mice via the PI3K/Akt/p53 signaling pathway.

13.
Aging (Albany NY) ; 15(16): 8458-8470, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37632838

RESUMO

OBJECTIVE: Cognitive impairment, one of the most prevalent complications of trigeminal neuralgia, is troubling for patients and clinicians due to limited therapeutic options. Curcumin shows antinociception and neuroprotection pharmacologically, suggesting that it may have therapeutic effect on this complication. This study aimed to investigate whether curcumin alleviates orofacial allodynia and improves cognitive impairment by regulating hippocampal CA1 region synaptic plasticity in trigeminal neuralgia. METHODS: A mouse model of trigeminal neuralgia was established by partially transecting the infraorbital nerve (pT-ION). Curcumin was administered by gavage twice daily for 14 days. Nociceptive thresholds were measured using the von Frey and acetone test, and the cognitive functions were evaluated using the Morris water maze test. Dendritic spines and synaptic ultrastructures in the hippocampal CA1 area were observed by Golgi staining and transmission electron microscopy. RESULTS: Curcumin intervention increased the mechanical and cold pain thresholds of models. It decreased the escape latency and distance to the platform and increased the number of platform crossings and dwell time in the target quadrant of models, and improved spatial learning and memory deficits. Furthermore, it partially restored the disorder of the density and proportion of dendritic spines and the abnormal density and structure of synapses in the hippocampal CA1 region of models. CONCLUSION: Curcumin alleviates abnormal orofacial pain and cognitive impairment in pT-ION mice by a mechanism that may be related to the synaptic plasticity of hippocampal CA1, suggesting that curcumin is a potential strategy for repairing cognitive dysfunction under long-term neuropathic pain conditions.


Assuntos
Disfunção Cognitiva , Curcumina , Neuralgia do Trigêmeo , Animais , Camundongos , Hiperalgesia , Hipocampo , Modelos Animais de Doenças , Camundongos Mutantes Neurológicos , Plasticidade Neuronal
14.
Eur J Neurosci ; 58(4): 2961-2984, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37518943

RESUMO

Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.


Assuntos
Depressão , Qualidade de Vida , Humanos , Depressão/etiologia , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Fatores de Crescimento Neural/metabolismo
15.
Nat Commun ; 14(1): 3424, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296152

RESUMO

ClC-2 transports chloride ions across plasma membranes and plays critical roles in cellular homeostasis. Its dysfunction is involved in diseases including leukodystrophy and primary aldosteronism. AK-42 was recently reported as a specific inhibitor of ClC-2. However, experimental structures are still missing to decipher its inhibition mechanism. Here, we present cryo-EM structures of apo ClC-2 and its complex with AK-42, both at 3.5 Å resolution. Residues S162, E205 and Y553 are involved in chloride binding and contribute to the ion selectivity. The side-chain of the gating glutamate E205 occupies the putative central chloride-binding site, indicating that our structure represents a closed state. Structural analysis, molecular dynamics and electrophysiological recordings identify key residues to interact with AK-42. Several AK-42 interacting residues are present in ClC-2 but not in other ClCs, providing a possible explanation for AK-42 specificity. Taken together, our results experimentally reveal the potential inhibition mechanism of ClC-2 inhibitor AK-42.


Assuntos
Canais de Cloro CLC-2 , Canais de Cloreto , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Microscopia Crioeletrônica , Membrana Celular/metabolismo
16.
J Agric Food Chem ; 71(18): 6894-6907, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125728

RESUMO

Due to the large amount of antibiotics used for human therapy, agriculture, and even aquaculture, the emergence of multidrug-resistant Streptococcus suis (S. suis) led to serious public health threats. Antibiotic-assisted strategies have emerged as a promising approach to alleviate this crisis. Here, the polyphenolic compound gallic acid was found to enhance sulfonamides against multidrug-resistant S. suis. Mechanistic analysis revealed that gallic acid effectively disrupts the integrity and function of the cytoplasmic membrane by dissipating the proton motive force of bacteria. Moreover, we found that gallic acid regulates the expression of dihydrofolate reductase, which in turn inhibits tetrahydrofolate synthesis. As a result of polypharmacology, gallic acid can fully restore sulfadiazine sodium activity in the animal infection model without any drug resistances. Our findings provide an insightful view into the threats of antibiotic resistance. It could become a promising strategy to resolve this crisis.


Assuntos
Streptococcus suis , Animais , Humanos , Streptococcus suis/genética , Streptococcus suis/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/metabolismo , Sulfanilamida/metabolismo , Sulfanilamida/farmacologia , Membrana Celular
17.
Med Sci Monit ; 29: e940589, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026421

RESUMO

The authors requested to correct the spelling of labels in Figure 3. The correct spelling should be "Healthy persons". The other elements of the figure remain the same, and the interpretation of the results remain unchanged. Reference: Xiaoman Min, Yongjun Huo, Ning Sun, Hongwei Zhi, Haitao Li, Sishuo Zhang, Wenqiang Cui, Yanlin Guo, Hongyun Wu: Relationship Between Changes in Cranio-Cervical Extensor Muscles and Quality of Life: A Single-Center Study of 15 Patients with Chronic Tension-Type Headache. Med Sci Monit, 2023; 29: e938574. DOI: 10.12659/MSM.938574.


Assuntos
Cefaleia do Tipo Tensional , Humanos , Qualidade de Vida , Pescoço , Músculo Esquelético
18.
CNS Neurosci Ther ; 29(7): 1785-1804, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880283

RESUMO

BACKGROUND: Stem cells offer a promising therapeutic strategy for patients with disorders of consciousness (DOC) after severe traumatic brain injury (TBI), but the optimal transplantation sites and cells are not clear. Although the paraventricular thalamus (PVT) and claustrum (CLA) are associated with consciousness and are candidate transplantation targets, few studies have been designed to investigate this possibility. METHODS: Controlled cortical injury (CCI) was performed to establish a mouse model of DOC. CCI-DOC paradigm was established to investigate the role of excitatory neurons of PVT and CLA in disorders of consciousness. The role of excitatory neuron transplantation in promoting arousal and recovery of consciousness was determined by optogenetics, chemogenetics, electrophysiology, Western blot, RT-PCR, double immunofluorescence labeling, and neurobehavioral experiments. RESULTS: After CCI-DOC, neuronal apoptosis was found to be concentrated in the PVT and CLA. Prolonged awaking latency and cognitive decline were also seen after destruction of the PVT and CLA, suggesting that the PVT and CLA may be key nuclei in DOC. Awaking latency and cognitive performance could be altered by inhibiting or activating excitatory neurons, implying that excitatory neurons may play an important role in DOC. Furthermore, we found that the PVT and CLA function differently, with the PVT mainly involved in arousal maintenance while the CLA plays a role mainly in the generation of conscious content. Finally, we found that by transplanting excitatory neuron precursor cells in the PVT and CLA, respectively, we could facilitate awakening with recovery of consciousness, which was mainly manifested by shortened awaking latency, reduced duration of loss of consciousness (LOC), enhanced cognitive ability, enhanced memory, and improved limb sensation. CONCLUSION: In this study, we found that the deterioration in the level and content of consciousness after TBI was associated with a large reduction in glutamatergic neurons within the PVT and CLA. Transplantation of glutamatergic neuronal precursor cells could play a beneficial role in promoting arousal and recovery of consciousness. Thus, these findings have the potential to provide a favorable basis for promoting awakening and recovery in patients with DOC.


Assuntos
Lesões Encefálicas Traumáticas , Claustrum , Camundongos , Animais , Estado de Consciência , Transtornos da Consciência , Tálamo , Neurônios/fisiologia
19.
J Cancer ; 14(3): 336-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860928

RESUMO

This study aimed to elucidate the effects of Qingrehuoxue Formula (QRHXF) on NSCLC and its underlying mechanisms. Nude mouse model of subcutaneous tumors was established. QRHXF and erastin were administered orally and intraperitoneally, respectively. Mice's body weight and subcutaneous tumor volumes were measured. The effects of QRHXF on epithelial-mesenchymal transition (EMT), tumor-associated angiogenesis and matrix metalloproteinases (MMPs) were assessed. Importantly, we also analysed the anti-NSCLC of QRHXF form the aspect of ferroptosis and apoptosis and investigate its underlying mechanisms. The safety of QRHXF in mice was also evaluated. QRHXF slowed down the speed of tumor growth and visibly inhibited tumor growth. The expression levels of CD31, VEGFA, MMP2 and MMP9 were prominently suppressed by QRHXF. Furthermore, QRHXF appeared to remarkably inhibite cell proliferation and EMT by decreasing Ki67, N-cadherin and vimentin expression but elevating E-cadherin expression. There were more apoptotic cells in QRHXF group's tumor tissues, and QRHXF treatment increased BAX and cleaved-caspased 3 levels but decreased Bcl-2 levels. QRHXF significantly increased the accumulation of ROS, Fe2+, H2O2, and MDA while reduced GSH levels. SLC7A11 and GPX4 protein levels were considerably suppressed by QRHXF treatment. Moreover, QRHXF triggered ultrastructural changes in the mitochondria of tumor cells. The levels of p53 and p-GSK-3ß were upregulated, whereas that of Nrf2 was downregulated in the groups treated with QRHXF. QRHXF displayed no toxicity in mice. QRHXF activated ferroptosis and apoptosis to suppress NSCLC cell progression via p53 and GSK-3ß/Nrf2 signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA