RESUMO
Three novel organic-inorganic polyoxoniobate-based compounds modified with Cu(II) amine complexes were synthesized under hydrothermal conditions with the chemical formulas as follows: K0.5[Cu(enMe)2]4[K0.5SiNb12O40(VO)4.25](OH)1.5·9H2O (1), K0.5[Cu(enMe)2]4[K0.5H2PNb12O40(VO)2]·12.5H2O (2), and K0.5[Cu(enMe)2]4[K0.5H2VNb12O40(VO)2]·12.5H2O (3) (enMe = 1,2-diaminopropane). These compounds were characterized by single crystal X-ray diffraction, infrared spectroscopy (IR), UV-Vis spectroscopy, elemental analysis and powder X-ray diffraction (PXRD) analysis. Notably, while these three compounds exhibit identical cell parameters, they possess distinct stoichiometric compositions and differing polyoxometalate building block structures. Typically, compounds with the same cell parameters are classified as isostructural, sharing identical structures with only minor elemental variations in their compositions. To the best of our knowledge, compounds 1-3 represent the first instances of compounds that share the same cell parameters yet are not isostructural. In this study, we not only synthesized these three compounds and thoroughly examined the differences in their structures and properties, but also investigated their catalytic performances as catalysts for the oxidation of styrene.
RESUMO
BACKGROUND: Gastric adenocarcinoma of the fundic gland type (GA-FG) is a newly described variant of gastric adenocarcinoma with lack of knowledges regarding its genetic features. METHODS: We performed whole-genome sequencing (WGS) in formalin-fixed paraffin-embedded (FFPE) tumor tissues and matched adjacent noncancerous specimens from 21 patients with GA-FG, and integrated published datasets from 1105 patients with traditional gastric adenocarcinoma with the purpose of dissecting genetic determinants both common to conventional gastric adenocarcinoma and unique to GA-FG disease. RESULTS: We characterized the genomic architecture of GA-FG disease, revealing the predominant proportion of C > T substitution among the six types of SNVs. GNAS was the most significantly mutated driver gene (14.29%). 42.8% of samples harbored "Kataegis." Distinct genomic alterations between GA-FG and conventional gastric cancer were identified. Specifically, low mutational burden and relatively moderate mutational frequencies of significantly mutated driver genes, coupled with the absence of non-silent alterations of formerly well-known drivers such as TP53, PIK3CA and KRAS were identified in GA-FG patients. Oncogenic signaling pathway analysis revealed mutational processes associated with focal adhesions and proteoglycans in cancer, highlighting both common and specific procedures during the development of GA-FG and conventional gastric cancer. CONCLUSION: Our study is the first to comprehensively depict the genomic landscape highlighting the multidimensional perturbations in GA-FG patients. These discoveries offered mechanistic insights for novel diagnostic and therapeutic strategies for patients with such disease.
Assuntos
Adenocarcinoma , Mutação , Neoplasias Gástricas , Sequenciamento Completo do Genoma , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fundo Gástrico/patologia , Adulto , Idoso de 80 Anos ou maisRESUMO
3-(2-Aminoethylamino)propyltriethoxysilane and carboxyethylsilanetriol sodium salt were grafted on silica-coated Fe3O4 nanoparticles via sol-gel process to prepare novel amine- and carboxyl-bifunctionalized magnetic nanocomposites (SMNPs-(NH2 + COOH)). After well characterized, this doubly functionalized material was used as magnetic solid-phase extraction (MSPE) adsorbent to separate and enrich inorganic chromium species followed by inductively coupled plasma-mass spectrometry detection. The optimization of MSPE operation parameters including pH was conducted. It is reasonably elucidated that the adsorption mechanisms of zwitterionic SMNPs-(NH2 + COOH) towards chromium species are electrostatic and/or coordination interactions. Cr(VI) and Cr(III) can be adsorbed around pH 3.0 and around 10.0 respectively with strong anti-interference ability not only from other co-existing ions but also from the two labile species each other, and eluted by dilute nitric acid solution. With a 15-fold enrichment factor, the limits of detection of Cr(VI) and Cr(III) were 0.008 and 0.009 µg L-1, respectively, profiting from the maximum adsorption capacities of 7.52 and 6.11 mg g-1. The just one magnetic extraction matrix based speciation scheme possesses excellent convenience and friendliness to Cr(VI) and Cr(III) without any oxidation or reduction prior to capture of these two species. This protocol has been successfully applied to the speciation analysis of inorganic chromium in real-world environmental water samples.
RESUMO
This study aims to explore the correlation between intestinal toxicity and composition changes of Euphorbia ebracteolata before and after Terminalia chebula soup(TCS) processing. Intragastric administration was performed on the whole animal model. By using fecal water content, inflammatory causes, and pathological damage of different parts of the intestinal tract of mice as indexes, the differences in intestinal toxicity of dichloromethane extraction of raw E. ebracteolata(REDE), dichloromethane extraction of TCS, and dichloromethane extraction of E. ebracteolata after simulated TCS processing(STREDE) were compared, so as to investigate the effect of TCS processing on the intestinal toxicity of E. ebracteolata. At the same time, the component databases of E. ebracteolata and T. chebula were constructed, and the composition changes of diterpenoids, tannins, and phenolic acids in the three extracted parts were analyzed by HPLC-TOF-MS. HPLC was used to compare the content of four diterpenoids including ent-11α-hydroxyabicta-8(14), 13(15)-dien-16, 12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and jolkinolide E(JNE) in the E. ebracteolata before and after processing and the residue of container wall after processing, so as to investigate the effect of TCS processing on the content and structure of the diterpenoids. The results showed that the REDE group could significantly increase the fecal water content and the release levels of TNF-α and IL-1ß from each intestinal segment, and intestinal tissue damage was accompanied by significant infiltration of inflammatory cells. However, compared with the REDE group, the intestinal tissue damage in the STREDE group was alleviated, and the infiltration of inflammatory cells decreased. The intestinal toxicity significantly decreased. Mass spectrometry analysis showed that there was no significant difference in the content of diterpenoids of REDE before and after simulated TCS processing, but a large number of tannins and phenolic acids were added. The results of HPLC showed that the content of four diterpenoids of E. ebracteo-lata decreased to varying degrees after TCS processing, ranging from-0.35% to-19.74%, and the decreased part mainly remained in the container wall, indicating that the structure of toxic diterpenoids of E. ebracteolata was not changed after TCS processing. The antagonistic effect of tannic and phenolic acids in the TCS may be the main reason for the reduced intestinal toxicity of E. ebracteolata after TCS processing. The TCS processing for E. ebracteolata is scientific.
Assuntos
Medicamentos de Ervas Chinesas , Euphorbia , Terminalia , Euphorbia/química , Animais , Terminalia/química , Camundongos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Masculino , Intestinos/efeitos dos fármacos , Intestinos/química , Cromatografia Líquida de Alta Pressão , HumanosRESUMO
Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE: Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.
Assuntos
Colite , Helicobacter pylori , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Antígenos de Bactérias/genética , Helicobacter pylori/genética , Transcriptoma/genética , Precursores de RNA/metabolismo , Interações Hospedeiro-Patógeno/genética , Análise de Sequência de RNA , RNA Mensageiro/metabolismo , Citotoxinas/metabolismoRESUMO
Strobilanthes sarcorrhiza (CTS) is a medicinal plant with various pharmacological effects such as tonifying kidney and anti-inflammatory. However, the chemical composition and difference of its four parts (leaves, stems, rhizomes, and root tubers) have been rarely reported. In this study, ultrafast flow liquid chromatography coupled with quadrupole-time-of-flight MS was applied to analyze the chemical profile of CTS and identify 55 compounds, including terpenoids, phenylethanol glycosides, fatty acid derivatives, chain glycosides, flavonoid glycosides, and others. Among these compounds, 34 compounds were first identified in CTS. They were mainly terpenoids, phenylethanol glycosides, fatty acid derivatives, and so forth. Multivariate statistical analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis were also used to evaluate the difference in chemical compounds from the four parts of CTS. The results showed that phenylethanol glycosides were the main compounds of the underground parts, while terpenoids were the main compounds of the aboveground parts. This study revealed the chemical diversity and similarity of CTS and suggested that the rhizomes could be used as an alternative medicinal part to improve the resource utilization of CTS.
Assuntos
Espectrometria de Massas , Análise Multivariada , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Extratos Vegetais/química , Terpenos/análise , Terpenos/química , Glicosídeos/análise , Glicosídeos/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Six different polyoxotungstate-based transition metal complexes were synthesized, namely [Cu5(2,2'-bpy)5(µ2-Cl)2(PO4)2(H2O)2][HPW12O40]·2H2O (1), [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]3[H1.5PW12O40]2·16.25H2O (2), [Cu(2,2'-bpy)2]2[SiW12O40]·10H2O (3), [Zn(phen)3]2[PWVWVI11O40]·5H2O (4), [Zn(phen)2(H2O)]2[SiW12O40]·2H2O (5), and [Zn(2,2'-bpy)2]2[SiW12O40] (6) (2,2'-bpy = 2,2'-bipyridine, inic = isonicotinic acid, phen = 1,10-phenanthroline). Compound 1 is based on [HPW12O40]2- anions, which are accommodated within the open channels of a supramolecular network formed by novel Cu-P-Cl coordination clusters. Compound 2 is constructed from [H1.5PW12O40]1.5- and novel [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]+ coordination fragments, and polyoxoanions are encapsulated within the pores created by the copper coordination fragments, resulting in a unique three-dimensional supramolecular architecture. Compound 3 is a two-dimensional structure formed through the covalent linkage between [SiW12O40]4- and [Cu(2,2'-bpy)2]2+. Compound 4 is a supramolecular architecture formed by [PWVWVI11O40]4- and [Zn(phen)3]2+ coordination fragments, while compound 5 is a supramolecular structure based on POM bi-supported Zn coordination complexes. Compound 6 is a two-dimensional framework structure constituted by [SiW12O40]4- and [Zn(2,2'-bpy)2]2+via covalent interactions. In addition, electrochemical measurement results show that the copper-based tungstate compounds 1-3 and zinc-based tungstate compounds 4-6 exhibit different performances and durabilities as electrochemical capacitors (compound 1 shows the highest specific capacitance of 94.0 F g-1 at 1.5 A g-1, whereas compound 6 maintains the best cycling stability with the capacity retention of 80.7% after 1000 cycles at 4 A g-1.). This study contributes to the development of POM-based transition metal complexes with high capacitance by providing insights into the design and synthesis process.
RESUMO
The science of polyoxometalates (POMs) has come a long way since molybdenum blue was first described in 1778 [...].
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dingxin Recipe â ¢ (DXR â ¢) is a traditional Chinese medicine compound used for hyperlipidemia treatment in clinical practice. However, its curative effects and pharmacological mechanisms in hyperlipidemia have not been clarified to date. AIM OF THE STUDY: Studies have demonstrated that gut barrier was strongly implicated in lipid deposition. Based on gut barrier and lipid metabolism, this study examined the effects and molecular mechanisms of DXR â ¢ in hyperlipidemia. MATERIALS AND METHODS: The bioactive compounds of DXR â ¢ were detected by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and its effects were evaluated in high-fat diet-fed rats. Specifically, the serum levels of lipids and hepatic enzymes were measured using the appropriate kits; colon and liver sections were obtained for histological analyses; gut microbiota and metabolites were analyzed by 16S rDNA sequencing and liquid chromatography-MS/MS; and the expression of genes and proteins was determined by real-time quantitative polymerase chain reaction and western blotting and immunohistochemistry, respectively. The pharmacological mechanisms of DXR â ¢ were further explored by fecal microbiota transplantation and short-chain fatty acid (SCFAs)-based interventions. RESULTS: DXR â ¢ treatment significantly downregulated serum lipid levels, mitigated hepatocyte steatosis and improved lipid metabolism. Moreover, DXR â ¢ improved the gut barrier, specifically by improving the physical barrier in the colon, causing part composition changes in the gut microbiota, and increasing the serum SCFAs level. DXR â ¢ also upregulated the expression of colon GPR43/GPR109A. Fecal microbiota transplantation from rats treated with DXR â ¢ downregulated part hyperlipidemia-related phenotypes, while the SCFAs intervention significantly improved most of the hyperlipidemia-related phenotypes and upregulated the expression of GPR43. Moreover, both DXR â ¢ and SCFAs upregulated the expression of colon ABCA1. CONCLUSION: DXR â ¢ protects against hyperlipidemia by improving the gut barrier, particularly the SCFAs/GPR43 pathway.
Assuntos
Hiperlipidemias , Ratos , Animais , Hiperlipidemias/tratamento farmacológico , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Lipídeos , Ácidos Graxos Voláteis/metabolismoRESUMO
To determine the content of endogenous toxic substance Pinellia ternata lectin(PTL) protein in Pinelliae Rhizoma and the related processed products, this study prepared specific monoclonal antibodies against PTL by hybridoma cell technology, and established a quantitative double-antibody sandwich enzyme linked immunosorbent assay(ELISA) for PTL antigen. The detection conditions were 2.5 µg·mL~(-1) working concentration of the captured antibody and 1â¶450 of the dilution multiple of detected antibody. The coating condition was staying overnight at 4 â. The blocking time and incubation times of antigen and detected antibody were all 90 minutes. The incubation time of horseradish peroxidase conjugated streptavidin-horseradish peroxidase(SA-HRP) was 15 minutes. The quantitative limit of the method for PTL antigen was 0.375 ng·mL~(-1). The linear range was 75.000-4 800.000 pg·mL~(-1), and R~2=0.997 1. The recovery rate was 90.0%-110.0%, and the variation coefficients of intra-test and inter-test precision were 2.0%-3.0% and 2.0%-8.5%.The content of PTL in three batches of Pinelliae Rhizoma and the related processed products was determined by the method, and the average content of PTL in Pinelliae Rhizoma was 35.42 mg·g~(-1). The average content of PTL in Pinelliae Rhizoma Praeparatum Cum Alumine, Pinelliae Rhizoma Praeparatum, and Pinelliae Rhizoma Praeparatum Cum Zingibere Et Alumine were 1.15 mg·g~(-1), 16.53 µg·g~(-1), and 122.63 ng·g~(-1), respectively, indicating that the content of PTL decreased significantly after processing. The quantitative double-antibody sandwich ELISA for PTL antigen established in this paper had good linearity, sensitive response, and high accuracy, which provided a simple and effective monitoring method for the detection of PTL content in the processing of Pinelliae Rhizoma.
Assuntos
Medicamentos de Ervas Chinesas , Pinellia , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática , Peroxidase do Rábano SilvestreRESUMO
This study investigated the anti-ascites effect of the total saponins of Phytolaccae Radix(PRTS) and the mechanism.H22 cell suspension was used(ip) to induce ascites in ICR male mice, and the model mice were randomized into model group, positive drug group(furosemide, 6 mg·kg~(-1)), total extract of Phytolaccae Radix(PRTE) group, and PRTS(1.29 g·kg~(-1)).Another 10 male mice were selected as the blank group.Mice in the blank group and model group were given(ig) normal saline containing 0.5% CMC-Na, and those in the positive drug group, PRTE group, and PRTS group received(ig) corresponding doses of drugs, once a day, for 8 consecutive days.The ascites volume, urine volume, and fecal water content in mice with ascites, serum levels of antidiure-tic hormone(ADH), renin in renin-angiotensin-aldosterone system(RAAS), angiotensin â ¡(Angâ ¡), and aldosterone(ALD), expression of aquaporin(AQP)1-AQP4 in kidney, expression of AQP1, AQP3 in colon, and expression of phosphatidylinositol 3-kinase/protein kinase B(PI3 K/Akt) pathway-related proteins were detected to explore the anti-ascites mechanism of PRTS.The results showed that the PRTS can increase the urine volume and fecal water content and decrease the ascites volume of ascites mice.Moreover, PRTS significantly reduced the expression of AQP1-AQP4 in kidney and AQP1, AQP3 in colon, serum levels of renin, Angâ ¡, ALD, and ADH, and the expression of p-PI3 K and p-Akt in the kidney of ascites mice.PRTS exerts anti-ascites effect by promoting urination and defecation.The mechanism is that it inhibits the activities of RAAS and ADH and suppresses the phosphorylation of PI3 K/Akt signaling pathway, thereby restricting the expression of AQPs in the kidney and colon.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Saponinas , Animais , Aquaporina 1 , Ascite/tratamento farmacológico , Ascite/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Renina/metabolismo , Saponinas/farmacologia , Água/metabolismoRESUMO
Three compounds based on Ge-V-O clusters were hydrothermally synthesized and characterized by IR, UV-Vis, XRD, ESR, elemental analysis and X-ray crystal structural analysis. Both [Cd(phen)(en)]2[Cd2(phen)2V12O40Ge8(OH)8(H2O)]â12.5H2O (1) and [Cd(DETA)]2[Cd(DETA)2]0.5[Cd2(phen)2V12O41Ge8(OH)7(0.5H2O)]â7.5H2O (2) (1,10-phen = 1,10-phenanthroline, en = ethylenediamine, DETA = diethylenetriamine) are the first Ge-V-O cluster compounds containing aromatic organic ligands. Compound 1 is the first dimer of Ge-V-O clusters, which is linked by a double bridge of two [Cd(phen)(en)]2+. Compound 2 exhibits an unprecedented 1-D chain structure formed by Ge-V-O clusters and [Cd2(DETA)2]4+ transition metal complexes (TMCs). [Cd(en)3]{[Cd(η2-en)2]3[Cd(η2-en)(η2-µ2-en)(η2-en)Cd][Ge6V15O48(H2O)]}â5.5H2O (3) is a novel 3-D structure which is constructed from [Ge6V15O48(H2O)]12- and four different types of TMCs. We also synthesized [Zn2(enMe)3][Zn(enMe)]2[Zn(enMe)2(H2O)]2[Ge6V15O48(H2O)]â3H2O (4) and [Cd(en)2]2{H8[Cd(en)]2Ge8V12O48(H2O)}â6H2O (5) (enMe = 1,2-propanediamine), which have been reported previously. In addition, the catalytic properties of these five compounds for styrene epoxidation have been assessed.
Assuntos
Complexos de Coordenação , Elementos de Transição , Cádmio , Cristalografia por Raios X , DEET , Ligantes , Modelos Moleculares , Elementos de Transição/químicaRESUMO
Background: The prevalence of rectal neuroendocrine tumors (RNET) has increased substantially over the past decades. Little is known on mechanistic alteration in the pathogenesis of such disease. We postulate that perturbations of human gut microbiome-metabolome interface influentially affect the development of RNET. The study aims to characterize the composition and function of faecal microbiome and metabolites in RNET individuals. Methods: We performed deep shotgun metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling of faecal samples from the discovery cohort (18 RNET patients, 40 controls), and validated the microbiome and metabolite-based classifiers in an independent cohort (15 RNET participants, 19 controls). Results: We uncovered a dysbiotic gut ecological microenvironment in RNET patients, characterized by aberrant depletion and attenuated connection of microbial species, and abnormally aggregated lipids and lipid-like molecules. Functional characterization based on our in-house and Human Project Unified Metabolic Analysis Network 2 (HUMAnN2) pipelines further indicated a nutrient deficient gut microenvironment in RNET individuals, evidenced by diminished activities such as energy metabolism, vitamin biosynthesis and transportation. By integrating these data, we revealed 291 robust associations between representative differentially abundant taxonomic species and metabolites, indicating a tight interaction of gut microbiome with metabolites in RNET pathogenesis. Finally, we identified a cluster of gut microbiome and metabolite-based signatures, and replicated them in an independent cohort, showing accurate prediction of such neoplasm from healthy people. Conclusions: Our current study is the first to comprehensively characterize the perturbed interface of gut microbiome and metabolites in RNET patients, which may provide promising targets for microbiome-based diagnostics and therapies for this disorder.
Assuntos
Microbioma Gastrointestinal , Microbiota , Tumores Neuroendócrinos , Humanos , Metaboloma , Metabolômica/métodos , Metagenoma , Metagenômica , Microambiente TumoralRESUMO
This study aims to explore the chemical structure transformation mechanisms of the main terpenoids in the effective fraction of Euphorbiae Ebracteolatae Radix(EER) during the processing with vinegar. The terpenoids including ent-11α-hydroxyabicta-8(14),13(15)-dien-16,12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and eupractenoid A(EA) were heated at 160 â with 6% acetic acid for 40 min, and then LC-MS/MS was employed to analyze the structural transformation rules of the terpenoids. Further, we analyzed the changes in the relative content of the four compounds and their transformation products in raw and vinegar processed EER to verify the transformation rules during the simulated processing with vinegar. In addition, JNB and FA were processed with single heating, heating with water or heating with acetic acid. We then employed HPLC to compare the content of these two terpenoids and their transformation products before and after processing, so as to investigate the effect of different processing methods on chemical structure transformation. The results showed that the lactone ring of the abietane-type diterpenoids HAO and JNB and the norditerpene lactone FA were opened by heating with acetic acid. When there were hydroxyl groups in the structures, terpenoids were esterized to esters and oxidized to form carbonyl groups. When there was epoxy ring in the structures, ring opening reaction was easy to occur. During the heating with acetic acid, the heterodimeric diterpenoid EA underwent the cleavage of ether bond to produce the rosane-type diterpenoid euphebracteolatin A(EHTA) and another abietane-type diterpenoid. The changes in the relative content of terpenoids and their transformation products in raw and vinegar-processed EER were basically consistent with those of simulated processing of components with vinegar. The HPLC results revealed that the effect of different simulated processing methods on structural transformation varied. Heating with acid can change JNB and FA into new components. Heating with water can also promote the structural transformation, with the efficiency obviously lower than that of heating with acid. Direct heating had no influence on the structure of JNB, while it significantly reduced the relative content of FA. The components treated with direct heating did not produce the products like those of the heating with acid. These results indicated that vinegar plays a key role in the structural transformation of diterpenoids during the processing of EER with vinegar. The structural transformation of diterpenoids in EER during the processing with vinegar may be the material basis for vinegar processed EER to reduce toxicity and preserve effect.
Assuntos
Diterpenos , Medicamentos de Ervas Chinesas , Terpenos , Ácido Acético/química , Medicamentos de Ervas Chinesas/química , Cromatografia Líquida , Abietanos , Espectrometria de Massas em TandemRESUMO
Mercapto- and amino-functionalized magnetic nanoparticles, Fe3O4@SiO2@MPTMS (SMNPs-MPTMS) and Fe3O4@SiO2@APTES (SMNPs-APTES), have been applied as magnetic solid-phase extraction (MSPE) sorbents to directly extract arsenite (As(III)) and arsenate (As(V)) respectively, followed by inductively coupled plasma-mass spectrometry (ICP-MS) detection. Various MSPE parameters were optimized including dose of magnetic adsorbent, pH of sample solution, loading and elution conditions of analytes, adsorption capacity and reusability of SMNPs-MPTMS and SMNPs-APTES for As(III) and As(V) respectively. Under the optimized MSPE conditions, this combined scheme possesses excellent selectivity and strong anti-interference ability without any oxidation or reduction prior to capture of these two species. It is found that with a 25-fold enrichment factor, the limits of detection of As(III) and As(V) were 23.5 and 10.5 ng L-1, respectively. To verify the reliability of the proposed protocol, a certified reference material of environmental water was analyzed, and the results for inorganic arsenic species were in close agreement with the certified values. The applicability of the combination strategy for speciation analysis of inorganic arsenic was evaluated in spiked tap, river, lake and rain water samples. Good recoveries of 89%-96% and 90%-102% were achieved for As(III) and As(V), respectively, with the relative standard deviation ranges of 3.2%-8.0% and 2.5%-7.6%. Through the characterization of functionalized magnetic nanoparticles and the optimization of MSPE experiment, it is confirmed that the existence of mercapto and amino groups on SMNPs-MPTMS and SMNPs-APTES sorbents are responsible for the extraction of As(III) and As(V), respectively, via coordination and electrostatic interactions.
Assuntos
Arsênio , Nanopartículas de Magnetita , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Reprodutibilidade dos Testes , Dióxido de Silício , Extração em Fase SólidaRESUMO
OBJECTIVE: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB-induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 (notch receptor 3) and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. CONCLUSIONS: CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.
Assuntos
Lesões das Artérias Carótidas/genética , Músculo Liso Vascular/metabolismo , Neointima/genética , Superóxido Dismutase/genética , Remodelação Vascular/genética , Animais , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Masculino , Músculo Liso Vascular/patologia , Neointima/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/biossínteseRESUMO
In this work, a novel amino functionalized Cu(II) ion-imprinted organic-inorganic hybrid monolithic column (Cu(II)-IIHMC) was prepared via one-pot co-condensation and the combination of sol-gel and ion-imprinting techniques in a fused capillary. The Cu(II)-IIHMC was used as solid phase microextraction (SPME) matrix followed by inductively coupled plasma-mass spectrometry (ICP-MS) for the analysis of trace Cu(II). The prepared Cu(II)-IIHMC has good mechanical strength, stable imprinting sites and homogeneous structure of network skeleton with large flow-through pores by optimizing the synthesis process. Under the optimized conditions, the Cu(II)-IIHMC can selectively adsorb Cu(II) with the adsorption capacity of 3.13 mg g-1. With enrichment factor of 10-fold, the calibration curve was established in the range of 0.05-50 µg L-1 with r2 of 0.9992 and the detection limit was 0.008 µg L-1 for Cu(II). Compared with the non-imprinted hybrid monolithic column (Cu(II)-NIHMC), the Cu(II)-IIHMC possesses better selectivity, anti-interference ability and adsorption capacity. The Cu(II)-IIHMC can specifically capture the target ion in the presence of competitive ions, with the selectivity coefficients exceeding 39.4. The protocol was validated by analyzing Certified Reference Materials of standard sediment, soil and iron ore, and the results were in good agreement with certified values. Moreover, the proposed in-tube SPME procedure can not only preconcentrate trace Cu(II), but also effectively reduce the matrix effect and powerfully eliminate the interference from the main metals in real samples. Therefore, the developed SPME-ICP-MS method with facile preparation, specific selectivity, high sensitivity and efficient analysis, was applied in the determination of trace Cu(II) in environmental and mineral samples with the recoveries of 89.8-111.8% in all spiked samples.
RESUMO
[Figure: see text].
Assuntos
Células Endoteliais/enzimologia , Janus Quinase 3/deficiência , Reepitelização , Remodelação Vascular , Lesões do Sistema Vascular/enzimologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Hiperplasia , Janus Quinase 3/genética , Masculino , Camundongos Knockout para ApoE , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologiaRESUMO
Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or a high-fat diet (HFD) for 12 wk. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in the stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induced obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.NEW & NOTEWORTHY This study identifies adenosine deaminase acting on RNA 1 as a novel factor promoting high-fat diet-induced obesity, at least partially, through modulating appetite-related genes ghrelin and PYY.
Assuntos
Adenosina Desaminase/genética , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Obesidade/genética , Adenosina Desaminase/deficiência , Animais , Apetite/genética , Composição Corporal , Dislipidemias/sangue , Dislipidemias/genética , Ingestão de Alimentos , Grelina/biossíntese , Grelina/genética , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Knockout , Obesidade/psicologia , Peptídeo YY/sangueRESUMO
A novel carboxyl-functionalized hybrid monolithic column was developed based on "thiol-ene" click reaction via "one-pot" by choosing mercaptosuccinic acid, γ-methyl methacrylate trimethoxysilane and tetramethoxysilane as reaction monomers. The design of the hybrid monolithic column was assisted by the comparison in computational simulation with existing carboxyl-functionalized materials. The characterization by scanning electron microscopy, energy dispersive X-ray spectroscopy, N2 adsorption-desorption measurement, Fourier-transform infrared spectroscopy and elemental analysis showed that the carboxyl-functionalized material has the advantages of good permeability and high mechanical strength. Then, we used the prepared carboxyl-hybrid monolith column as solid phase microextraction adsorbent for separation of trace inorganic chromium species. Under pH 4.5, the hybrid monolith column can selectively enrich Cr(III) without adsorbing Cr(VI) and afterwards, Cr(III) can be eluted by 1.0 mol L-1 HCl. The chromium speciation separation method based on carboxyl-hybrid monolith column followed by inductively coupled plasma-mass spectrometry possessed the merits of facile preparation, low cost, simple and mild extraction condition, and sensitive detection, which has been successfully applied to the separation, enrichment and detection of inorganic chromium in environmental waters.