Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36637428

RESUMO

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Peixe-Zebra , Humanos , Gravidez , Feminino , Camundongos , Animais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Fólico , Suplementos Nutricionais , Homeostase , Desenvolvimento Embrionário/genética
2.
Hum Mol Genet ; 31(5): 733-747, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34568901

RESUMO

Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.


Assuntos
Distrofias Musculares , Peixe-Zebra , Animais , Humanos , Laminina/genética , Lisossomos/genética , Lisossomos/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Fatores de Transcrição , Peixe-Zebra/genética
3.
Plant Methods ; 15: 119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673276

RESUMO

BACKGROUND: Targeted genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been applied in a large number of plant species. Using a gene-specific single guide RNA (sgRNA) and the CRISPR/Cas9 system, small editing events such as deletions of few bases can be obtained. However larger deletions are required for some applications. In addition, identification and characterization of edited events can be challenging in plants with complex genomes, such as wheat. RESULTS: In this study, we used the CRISPR/Cas9 system and developed a protocol that yielded high number of large deletions employing a pair of co-expressed sgRNA to target the same gene. The protocol was validated by targeting three genes, TaABCC6, TaNFXL1 and TansLTP9.4 in a wheat protoplast assay. Deletions of sequences located between the two sgRNA in each gene were the most frequent editing events observed for two of the three genes. A comparative assessment of editing frequencies between a codon-optimized Cas9 for expression in algae, crCas9, and a plant codon-optimized Cas9, pcoCas9, showed more consistent results with the vector expressing pcoCas9. Editing of TaNFXL1 by co-expression of sgRNA pair was investigated in transgenic wheat plants. Given the ploidy of bread wheat, a rapid, robust and inexpensive genotyping protocol was also adapted for hexaploid genomes and shown to be a useful tool to identify homoeolog-specific editing events in wheat. CONCLUSIONS: Co-expressed pairs of sgRNA targeting single genes in conjunction with the CRISPR/Cas9 system produced large deletions in wheat. In addition, a genotyping protocol to identify editing events in homoeologs of TaNFXL1 was successfully adapted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA