Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38955841

RESUMO

Sodium-ion batteries (SIBs), owing to their abundant resources and cost-effectiveness, have garnered considerable interest in the realm of large-scale energy storage. The properties of cathode materials profoundly affect the cycle stability and specific capacity of batteries. Herein, a series of Cu-doped spherical P2-type Na0.7Fe0.23-xCuxMn0.77O2 (x = 0, 0.05, 0.09, and 0.14, x-NFCMO) was fabricated using a convenient hydrothermal method. The successful doping of Cu efficaciously mitigated the Jahn-Teller effect, augmented the electrical conductivity of the material, and diminished the resistance to charge transfer. The distinctive spherical structure remained stable and withstood considerable volumetric strain, thereby improving the cyclic stability of the material. The optimized 0.09-NFCMO cathode exhibited a high specific capacity of 168.6 mAh g-1 at 100 mA g-1, a superior rate capability (90.9 mAh g-1 at 2000 mA g-1), and a good cycling stability. This unique structure design and doping approach provides new insights into the design of advanced electrode materials for sodium-ion batteries.

2.
BMC Plant Biol ; 24(1): 494, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831264

RESUMO

BACKGROUND ACMELLA RADICANS: (Jacquin) R.K. Jansen is a new invasive species record for Yunnan Province, China. Native to Central America, it has also been recently recorded invading other parts of Asia. To prevent this weed from becoming a serious issue, an assessment of its ecological impacts and potential distribution is needed. We predicted the potential distribution of A. radicans in China using the MaxEnt model and its ecological impacts on local plant communities and soil nutrients were explored. RESULTS: Simulated training using model parameters produced an area under curve value of 0.974, providing a high degree of confidence in model predictions. Environmental variables with the greatest predictive power were precipitation of wettest month, isothermality, topsoil TEB (total exchangeable bases), and precipitation seasonality, with a cumulative contribution of more than 72.70% and a cumulative permutation importance of more than 69.20%. The predicted potential suitable area of A. radicans in China is concentrated in the southern region. Projected areas of A. radicans ranked as high and moderately suitable comprised 5425 and 26,338 km2, accounting for 0.06 and 0.27% of the Chinese mainland area, respectively. Over the 5 years of monitoring, the population density of A. radicans increased while at the same time the population density and importance values of most other plant species declined markedly. Community species richness, diversity, and evenness values significantly declined. Soil organic matter, total N, total P, available N, and available P concentrations decreased significantly with increasing plant cover of A. radicans, whereas pH, total K and available K increased. CONCLUSION: Our study was the first to show that A. radicans is predicted to expand its range in China and may profoundly affect plant communities, species diversity, and the soil environment. Early warning and monitoring of A. radicans must be pursued with greater vigilance in southern China to prevent its further spread.


Assuntos
Espécies Introduzidas , China , Solo/química , Ecossistema
3.
Vaccines (Basel) ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793715

RESUMO

The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens.

4.
Thyroid ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666684

RESUMO

OBJECTIVE: To clarify the association between levothyroxine (LT-4) treatment and various adverse pregnancy outcomes in pregnant women with thyroid stimulating hormone (TSH) levels ranging between 2.5 to 10.0 mIU/L in the first trimester, stratified according to thyroid peroxidase antibody (TPOAb) positivity and TSH level. METHODS: This retrospective analysis of retrospectively and prospectively collected cohort data included Chinese pregnant women with TSH levels of 2.5-10 mIU/L and normal free thyroxine levels (11.8-18.4 pmol/L) in the first trimester. All participants were followed up until the completion of pregnancy, and information on LT-4 treatment, pregnancy complications, and pregnancy outcomes was recorded. A 1:1 nearest-neighbor propensity score matching (PSM) between the LT-4-treated and -untreated groups with a caliper distance of 0.02 was performed using a multivariable logistic regression model. Multivariable-adjusted modified Poisson regression was used to estimate the relative risk (RR) and 95% confidence interval (CI) of LT-4 treatment for adverse pregnancy outcomes. Subgroup analyses were also performed in four subgroups simultaneously stratified by TPOAb status (negative or positive) and TSH levels (2.5-4.0 mIU/L as high-normal group and 4.0-10.0 mIU/L as SCH group). The study was registered in the Chinese Clinical Trial Registry (ChiCTR2100047394). RESULTS: Among the 4,370 pregnant women in the study, 1,342 received LT-4 treatment, and 3,028 did not. The 1:1 PSM yielded 668 pairs of individuals and revealed that LT-4 treatment was significantly associated with a decreased risk of pregnancy loss (RR=0.528, 95% CI: 0.344-0.812) and an increased risk of small-for-gestational-age infants (RR=1.595, 95% CI: 1.023-2.485). Subgroup analyses suggested that the above effects of LT-4 treatment were mainly from TPOAb-negative participants. LT-4 treatment was associated with an increased risk of preterm birth (RR=2.214, 95% CI: 1.016-4.825) in TPOAb-positive pregnant women with high-normal TSH levels. CONCLUSION: LT-4 treatment was significantly associated with a lower risk of pregnancy loss and a higher risk of small-for-gestational-age infants in pregnant women with TSH levels of 2.5-10 mIU/L. An increased risk of preterm birth was observed in the LT-4-treated group among TPOAb-positive participants with TSH levels of 2.5-4.0 mIU/L.

5.
J Immunol ; 212(7): 1081-1093, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380993

RESUMO

Arthritis causes Fos-like 2 (Fosl2) inactivation, and various immune cells contribute to its pathogenesis. However, little is known about the role of Fosl2 in hematopoiesis and the possible pathological role of Fosl2 inactivation in the hematopoietic system in arthritis. In this study, we show that Fosl2 maintains hematopoietic stem cell (HSC) quiescence and differentiation while controlling the inflammatory response via macrophages. Fosl2-specific deletion in the hematopoietic system caused the expansion of HSCs and myeloid cell growth while affecting erythroid and B cell differentiation. Fosl2 inactivation enhanced macrophage M1 polarization and stimulated proinflammatory cytokines and myeloid growth factors, skewing HSCs toward myeloid cell differentiation, similar to hematopoietic alterations in arthritic mice. Loss of Fosl2 mediated by Vav-iCre also displays an unexpected deletion in embryonic erythro-myeloid progenitor-derived osteoclasts, leading to osteopetrosis and anemia. The reduced bone marrow cellularity in Vav-iCreFosl2f/f mice is a consequence of the reduced bone marrow space in osteopetrotic mice rather than a direct role of Fosl2 in hematopoiesis. Thus, Fosl2 is indispensable for erythro-myeloid progenitor-derived osteoclasts to maintain the medullary cavity to ensure normal hematopoiesis. These findings improve our understanding of the pathogenesis of bone-destructive diseases and provide important implications for developing therapeutic approaches for these diseases.


Assuntos
Antígeno 2 Relacionado a Fos , Células-Tronco Hematopoéticas , Osteopetrose , Animais , Camundongos , Artrite/patologia , Transtornos da Insuficiência da Medula Óssea/patologia , Diferenciação Celular , Hematopoese/genética , Osteopetrose/genética , Osteopetrose/patologia , Antígeno 2 Relacionado a Fos/genética
6.
Cell Discov ; 10(1): 14, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320990

RESUMO

The current SARS-CoV-2 variants strikingly evade all authorized monoclonal antibodies and threaten the efficacy of serum-neutralizing activity elicited by vaccination or prior infection, urging the need to develop antivirals against SARS-CoV-2 and related sarbecoviruses. Here, we identified both potent and broadly neutralizing antibodies from a five-dose vaccinated donor who exhibited cross-reactive serum-neutralizing activity against diverse coronaviruses. Through single B-cell sorting and sequencing followed by a tailor-made computational pipeline, we successfully selected 86 antibodies with potential cross-neutralizing ability from 684 antibody sequences. Among them, PW5-570 potently neutralized all SARS-CoV-2 variants that arose prior to Omicron BA.5, and the other three could broadly neutralize all current SARS-CoV-2 variants of concern, SARS-CoV and their related sarbecoviruses (Pangolin-GD, RaTG13, WIV-1, and SHC014). Cryo-EM analysis demonstrates that these antibodies have diverse neutralization mechanisms, such as disassembling spike trimers, or binding to RBM or SD1 to affect ACE2 binding. In addition, prophylactic administration of these antibodies significantly protects nasal turbinate and lung infections against BA.1, XBB.1, and SARS-CoV viral challenge in golden Syrian hamsters, respectively. Importantly, post-exposure treatment with PW5-5 and PW5-535 also markedly protects against XBB.1 challenge in these models. This study reveals the potential utility of computational process to assist screening cross-reactive antibodies, as well as the potency of vaccine-induced broadly neutralizing antibodies against current SARS-CoV-2 variants and related sarbecoviruses, offering promising avenues for the development of broad therapeutic antibody drugs.

7.
Cell Host Microbe ; 32(1): 25-34.e5, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38029742

RESUMO

Emerging SARS-CoV-2 sub-lineages like XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3 and the variant BA.2.86 have recently been identified. Understanding the efficacy of current vaccines on these emerging variants is critical. We evaluate the serum neutralization activities of participants who received COVID-19 inactivated vaccine (CoronaVac), those who received the recently approved tetravalent protein vaccine (SCTV01E), or those who had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Neutralization profiles against a broad panel of 30 sub-lineages reveal that BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibit heightened resistance to neutralization compared to previous variants. However, despite their extra mutations, BA.2.86 and the emerging XBB sub-lineages do not demonstrate significantly increased resistance to neutralization over XBB.1.5. Encouragingly, the SCTV01E booster consistently induces higher neutralizing titers against all these variants than breakthrough infection does. Cellular immunity assays also show that the SCTV01E booster elicits a higher frequency of virus-specific memory B cells. Our findings support the development of multivalent vaccines to combat future variants.


Assuntos
Infecções Irruptivas , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
Prog Orthod ; 24(1): 38, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981597

RESUMO

OBJECTIVES: To investigate the displacement of dentition and stress distribution on periodontal ligament (PDL) during retraction and intrusion of anterior teeth under different proclination of incisors using clear aligner (CA) in cases involving extraction of the first premolars. METHODS: Models were constructed, consisting of the maxilla, PDLs, CA and maxillary dentition without first premolars. These models were then imported to finite element analysis (FEA) software. The incisor proclination determined the division of the models into three groups: Small torque (ST) with U1-SN = 100°, Middle torque (MT) with U1-SN = 110°, and High torque (HT) with U1-SN = 120°. Following space closure, a 200 g intrusion force was applied at angles of 60°, 70°, 80°, and 90° to the occlusal plane, respectively. RESULTS: CA therapy caused lingual tipping and extrusion of incisors, mesial tipping and intrusion of canines, and mesial tipping of posterior teeth in each group. As the proclination of incisors increased, the incisors presented more extrusion and minor retraction, and the teeth from the canine to the second molar displayed an increased tendency of intrusion. The peak Von Mises equivalent stress (VMES) value successively decreased from the central incisor to the canine and from the second premolar to the second molar, and the VMES of the second molar was the lowest among the three groups. When the angle between the intrusion force and occlusal plane got larger, the incisors exhibited greater intrusion but minor retraction. CONCLUSIONS: The "roller coaster effect" usually occurred in cases involving premolar extraction with CA, especially in patients with protruded incisors. The force closer to the vertical direction were more effective in achieving incisor intrusion. The stress on PDLs mainly concentrated on the cervix and apex of incisors during the retraction process, indicating a possibility of root resorption.


Assuntos
Aparelhos Ortodônticos Removíveis , Ligamento Periodontal , Feminino , Humanos , Incisivo , Análise de Elementos Finitos , Dente Molar
9.
ACS Appl Mater Interfaces ; 15(42): 49223-49232, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37838949

RESUMO

Currently, severe shuttle effects and sluggish conversion kinetics are the main obstacles to the advancement of lithium-sulfur (Li-S) batteries. Modification of the battery separator by a catalyst is a promising approach to tackle these problems, but simultaneously obtaining rich catalytic active sites, high conductivity, and remarkable stability remains a great challenge. Herein, a flower-like MXene/MoS2/SnS@C heterostructure as the functional intercalation of Li-S batteries was prepared for accelerating the synergistic adsorption-electrocatalysis of sulfur conversion. The MXene skeleton constructs a three-dimensional conductive network that anchors polysulfides and enhances charge transfer. Meanwhile, the MoS2/SnS has rich active sites for accelerating polysulfide conversion, leading to excellent electrochemical performances. A battery with MXene/MoS2/SnS@C displays an extraordinary capacity of 836.1 mAh g-1 over 200 cycles at 0.5C and demonstrates a remarkable cycling stability with a capacity attenuation of approximately 0.051% per cycle during 1000 cycles at 2C. When the sulfur loading reaches 5.1 mg cm-2, the capacity still maintains 722.4 mAh g-1 over 50 cycles. This research proposes a novel strategy to design stable catalysts for Li-S batteries with an extended lifespan.

10.
Pathogens ; 12(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37764916

RESUMO

Evidence of antibody-dependent enhancement (ADE) of other viruses has raised concerns about the safety of SARS-CoV-2 vaccines and antibody therapeutics. In vitro studies have shown ADE of SARS-CoV-2 infection. In this study, we also found that vaccination/convalescent sera and some approved monoclonal antibodies can enhance SARS-CoV-2 infection of FcR-expressing B cells in vitro. However, the enhancement of SARS-CoV-2 infection can be prevented by blocking Fc-FcR interaction through the addition of human serum/IgG or the introduction of mutations in the Fc portion of the antibody. It should be noted that ADE activity observed on FcR-expressing cells in vitro may not necessarily reflect the situation in vivo; therefore, animal and clinical data should be included for ADE evaluation.

11.
Angew Chem Int Ed Engl ; 62(41): e202310419, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615859

RESUMO

Zeolites with uniform micropores are important shape-selective catalysts. However, the external acid sites of zeolites have a negative impact on shape-selective catalysis, and the microporosity may lead to serious diffusion limitation. Herein, we report on the direct synthesis of hierarchical hollow STW-type zeolite single crystals with a siliceous exterior. In an alkalinous fluoride medium, the nucleation of highly siliceous STW zeolites takes place first, and the nanocrystals are preferentially aligned on the outer surface of the gel agglomerates to grow into single crystalline shells upon crystallization. The lagged crystallization of the internal Al-rich amorphous gels onto the inner surface of nanocrystalline zeolite shells leads to the formation of hollow cavities in the core of the zeolite crystals. The hollow zeolite single crystals possess a low-to-high aluminum gradient from the surface to the core, resulting in an intrinsic inert external surface, and exhibit superior catalytic performance in toluene methylation reactions.

12.
Front Plant Sci ; 14: 1070674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324697

RESUMO

Introduction: In natural systems, diverse plant communities tend to prevent a single species from dominating. Similarly, management of invasive alien plants may be achieved through various combinations of competing species. Methods: We used a de Wit replacement series to compare different combinations of sweet potato (Ipomoea batatas (L.) Lam), hyacinth bean (Lablab purpureus (L.) Sweet) and mile-a-minute (Mikania micrantha Kunth) through measures of photosynthesis, plant growth, nutrient levels in plant tissue and soil, and competitive ability. Results: Cultured alone sweet potato and hyacinth beans exhibited higher total biomass, leafstalk length, and leaf area than mile-a-minute. In mixed culture, either sweet potato or hyacinth bean or both together significantly suppressed the mile-a-minute parameters, i.e., plant height, branch, leaf, adventitious root, and biomass (P<0.05). Based on a significantly lower than 1.0 relative yield of the three plant species in mixed culture, we showed intraspecific competition to be less than interspecific competition. Calculated indices (relative yield, relative yield total, competitive balance index, and change in contribution) demonstrated a higher competitive ability and higher influence of either crop compared to mile-a-minute. The presence of sweet potato and hyacinth bean, especially with both species in combination, significantly reduced (P<0.05) mile-a-minute's net photosynthetic rate (Pn), antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase, and malondialdehyde), chlorophyll content, and nutrient content (N, P, and K). In soil with mile-a-minute in monoculture soil organic matter, total and available N, total and available K, and available P were significantly greater (P<0.05) than in soil with sweet potato grown in monoculture, but less than in soil with hyacinth bean grown in monoculture soil. Nutrient soil content was comparatively reduced for plant mixtures. Plant height, leaf, biomass, Pn, antioxidant enzyme activities, and plant and soil nutrient contents of sweet potato and hyacinth bean tended to be much greater when grown with two crops compared to in mixture with just sweet potato or hyacinth bean. Discussion: Our results suggest that the competitive abilities of both sweet potato and hyacinth bean were greater than that of mile-a-minute, and also that mile-a-minute suppression was significantly improved via a combination of the two crops compared to either sweet potato or hyacinth bean alone.

13.
Small ; 19(40): e2301545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37287408

RESUMO

Practical applications of lithium-sulfur (Li-S) batteries have been hindered by sluggish reaction kinetics and severe capacity decay during charge-discharge cycling due to the notorious shuttle effect of polysulfide and the unfavored deposition and dissolution of Li2 S. Herein, to address these issues, a double-defect engineering strategy is developed for preparing Co-doped FeP catalyst containing P vacancies on MXene, which effectively improves the bidirectional redox of Li2 S. Mechanism analysis indicates that P vacancy accelerates Li2 S nucleation via increased unsaturated sites, and Co doping generates local electric field to reduce the reaction energy barrier and accelerate Li2 S dissolution. MXene provides highly conductive channels for electron transport, and effectively captures polysulfide. The double-defect catalyst enables an impressive reversible specific capacity of 1297.9 mAh g-1 at 0.2 C, and excellent rate capability of 726.5 mAh g-1 at 4 C. Remarkably, it demonstrates excellent cycling stability with capacity retention of 533.3 mAh g-1 after 500 cycles at 2 C. The results can unlock the double-defect engineering of vacancy induction and heteroatomic doping towards practical Li-S batteries.

14.
Virology ; 585: 205-214, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37384967

RESUMO

Human enterovirus A71 (EV-A71) is the major causative agent of hand, foot, and mouth disease (HFMD), which may lead to neurological sequelae and even death. Although EV-A71 seriously threatens public health, there remains no efficient drug for the treatment of EV-A71 infection. We previously demonstrated that ROCK1 is a novel host dependency factor for EV-A71 replication and can serve as a target for the development of anti-EV-A71 therapeutics. In this study, we identified a subset of inhibitors with potential anti-EV-A71 activity by virtual screening using ROCK1 as a target. Among the hits, Dasabuvir, an HCV polymerase inhibitor, was found to have the best antiviral activity which is consistent with the ranking scores in Autodock Vina and iGEMDOCK. We found that Dasabuvir efficiently suppressed EV-A71 replication in a dose-dependent manner. Moreover, Dasabuvir not only efficiently suppressed the replication of EV-A71 in RD cells, but also in multiple cell lines, including HEK-293T, Caco-2, HT-29, HepG2, and Huh7. Besides, Dasabuvir alleviated the release of proinflammatory cytokines caused by EV-A71 infection. Notably, Dasabuvir also exhibited antiviral activity of CVA10, indicating it may have broad-spectrum antiviral activity against species Enteroviruses A. Hence, our results further confirm that ROCK1 can be a potential drug target and suggest Dasabuvir could be a clinical candidate for the treatment of EV-A71 infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Humanos , Células CACO-2 , Infecções por Enterovirus/tratamento farmacológico , Antivirais/farmacologia , Quinases Associadas a rho
15.
Micromachines (Basel) ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37241593

RESUMO

In order to remove noise generated during the accelerometer calibration process, an accelerometer denoising method based on empirical mode decomposition (EMD) and time-frequency peak filtering (TFPF) is proposed in this paper. Firstly, a new design of the accelerometer structure is introduced and analyzed by finite element analysis software. Then, an algorithm combining EMD and TFPF is proposed for the first time to deal with the noise of the accelerometer calibration process. Specific steps taken are to remove the intrinsic mode function (IMF) component of the high frequency band after the EMD decomposition, and then to use the TFPF algorithm to process the IMF component of the medium frequency band; meanwhile, the IMF component of the low frequency band is reserved, and finally the signal is reconstructed. The reconstruction results show that the algorithm can effectively suppress the random noise generated during the calibration process. The results of spectrum analysis show that EMD + TFPF can effectively protect the characteristics of the original signal and that the error can be controlled within 0.5%. Finally, Allan variance is used to analyze the results of the three methods to verify the filtering effect. The results show that the filtering effect of EMD + TFPF is the most obvious, being 97.4% higher than the original data.

16.
Micromachines (Basel) ; 14(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37241595

RESUMO

This paper presents an improved empirical modal decomposition (EMD) method to eliminate the influence of the external environment, accurately compensate for the temperature drift of MEMS gyroscopes, and improve their accuracy. This new fusion algorithm combines empirical mode decomposition (EMD), a radial basis function neural network (RBF NN), a genetic algorithm (GA), and a Kalman filter (KF). First, the working principle of a newly designed four-mass vibration MEMS gyroscope (FMVMG) structure is given. The specific dimensions of the FMVMG are also given through calculation. Second, finite element analysis is carried out. The simulation results show that the FMVMG has two working modes: a driving mode and a sensing mode. The resonant frequency of the driving mode is 30,740 Hz, and the resonant frequency of the sensing mode is 30,886 Hz. The frequency separation between the two modes is 146 Hz. Moreover, a temperature experiment is performed to record the output value of the FMVMG, and the proposed fusion algorithm is used to analyse and optimise the output value of the FMVMG. The processing results show that the EMD-based RBF NN+GA+KF fusion algorithm can compensate for the temperature drift of the FMVMG effectively. The final result indicates that the random walk is reduced from 99.608°/h/Hz1/2 to 0.967814°/h/Hz1/2, and the bias stability is decreased from 34.66°/h to 3.589°/h. This result shows that the algorithm has strong adaptability to temperature changes, and its performance is significantly better than that of an RBF NN and EMD in compensating for the FMVMG temperature drift and eliminating the effect of temperature changes.

17.
Phys Chem Chem Phys ; 24(45): 27915-27922, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367389

RESUMO

Although the d-band correlations within metastable rare-earth ferrites (ReFe2O4) enable charge ordering transition functionalities beyond conventional semiconductors, their material synthesis yet requires a reducing atmosphere that is toxic and explosive. Herein, we demonstrate a reactive spark plasma sintering (RSPS) strategy to effectively synthesize metastable ReFe2O4 (Re = Er, Tm, Yb, Lu) simply in coarse vacuum within a greatly shortened reaction period. High flexibility is gained in adjusting their rare-earth composition and thereby the charge ordering transition temperature within 218-330 K. Assisted by the temperature-dependent near edge X-ray absorption fine structure (NEXAFS) analysis, an elevation in the Fe3+/Fe2+ orbital configuration within ReFe2O4 was observed compared to previous reports, and it is consistent with their higher Mott temperature and activation energy observed in their electrical transportations. This work elucidates stabilization of the metastable phase (e.g., ReFe2O4) via the non-equilibrium processes of RSPS beyond the thermodynamic restrictions.

20.
Cell Host Microbe ; 30(8): 1077-1083.e4, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35594867

RESUMO

The SARS-CoV-2 Omicron variant has evolved into four sub-lineages-BA.1, BA.1.1, BA.2, and BA.3-with BA.2 becoming dominant worldwide. We and others have reported antibody evasion of BA.1 and BA.2, but side-by-side comparisons of Omicron sub-lineages to vaccine-elicited or monoclonal antibody (mAb)-mediated neutralization are necessary. Using VSV-based pseudovirus, we report that sera from individuals vaccinated by two doses of an inactivated whole-virion vaccine shows weak to no neutralization activity, while homologous or heterologous boosters markedly improve neutralization titers against all Omicron sub-lineages. We also present neutralization profiles against a 20 mAb panel, including 10 authorized or approved, against the Omicron sub-lineages, along with mAb mapping against single or combinatorial spike mutations. Most mAbs lost neutralizing activity, while some demonstrate distinct neutralization patterns among Omicron sub-lineages, reflecting antigenic differences. Collectively, our results suggest the Omicron sub-lineages threaten the neutralization efficacy of current vaccines and antibody therapeutics, highlighting the importance of vaccine boosters.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização , SARS-CoV-2/genética , Vacinas de Produtos Inativados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA