Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Phys Med Biol ; 69(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776951

RESUMO

Objective.In this work, we present and evaluate a technique for performing interface measurements of beta particle-emitting radiopharmaceutical therapy agents in solution.Approach.Unlaminated EBT3 film was calibrated for absorbed dose to water using a NIST matched x-ray beam. Custom acrylic source phantoms were constructed and placed above interfaces comprised of bone, lung, and water-equivalent materials. The film was placed perpendicular to these interfaces and measurements for absorbed dose to water using solutions of90Y and177Lu were performed and compared to Monte Carlo absorbed dose to water estimates simulated with EGSnrc. Surface and depth dose profile measurements were also performed.Main results.Surface absorbed dose to water measurements agreed with predicted results within 3.6% for177Lu and 2.2% for90Y. The agreement between predicted and measured absorbed dose to water was better for90Y than177Lu for depth dose and interface profiles. In general, agreement withink= 1 uncertainty bounds was observed for both radionuclides and all interfaces. An exception to this was found for the bone-to-water interface for177Lu due to the increased sensitivity of the measurements to imperfections in the material surfaces.Significance. This work demonstrates the feasibility and limitations of using radiochromic film for performing absorbed dose to water measurements on beta particle-emitting radiopharmaceutical therapy agents across material interfaces.


Assuntos
Partículas beta , Método de Monte Carlo , Compostos Radiofarmacêuticos , Partículas beta/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/administração & dosagem , Radiometria/instrumentação , Radiometria/métodos , Imagens de Fantasmas , Água/química , Radioisótopos de Ítrio/uso terapêutico , Humanos
2.
Appl Radiat Isot ; 208: 111307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564840

RESUMO

Early works that used thermoluminescent dosimeters (TLDs) to measure absorbed dose from alpha particles reported relatively high variation (10%) between TLDs, which is undesirable for modern dosimetry applications. This work outlines a method to increase precision for absorbed dose measured using TLDs with alpha-emitting radionuclides by applying an alpha-specific chip factor (CF) that individually characterizes the TLD sensitivity to alpha particles. Variation between TLDs was reduced from 21.8% to 6.7% for the standard TLD chips and 7.9% to 3.3% for the thin TLD chips. It has been demonstrated by this work that TLD-100 can be calibrated to precisely measure the absorbed dose to water from alpha-emitting radionuclides.


Assuntos
Dosímetros de Radiação , Dosimetria Termoluminescente , Dosimetria Termoluminescente/métodos , Radioisótopos , Radiometria/métodos , Calibragem
3.
Phys Med Biol ; 69(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38684165

RESUMO

Objective. This work introduces a novel approach to performing active and passive dosimetry for beta-emitting radionuclides in solution using common dosimeters. The measurements are compared to absorbed dose to water (Dw) estimates from Monte Carlo (MC) simulations. We present a method for obtaining absorbed dose to water, measured with dosimeters, from beta-emitting radiopharmaceutical agents using a custom SPECT/CT compatible phantom for validation of Monte Carlo based absorbed dose to water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, Exradin A20-375 parallel plate ion chamber, unlaminated EBT3 film, and thin TLD100 microcubes was constructed for the purpose of measuring absorbed dose to water from solutions of common beta-emitting radiopharmaceutical therapy agents. The phantom is equipped with removable detector inserts that allow for multiple configurations and is designed to be used for validation of image-based absorbed dose estimates with detector measurements. Two experiments with131I and one experiment with177Lu were conducted over extended measurement intervals with starting activities of approximately 150-350 MBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. Agreement withink= 1 uncertainty between measured and MC predictedDwwas observed for all dosimeters, except the A20-375 ion chamber during the second131I experiment. Despite the agreement, the measured values were generally lower than predicted values by 5%-15%. The uncertainties atk = 1 remain large (5%-30% depending on the dosimeter) relative to other forms of radiation therapy.Significance. Despite high uncertainties, the overall agreement between measured and simulated absorbed doses is promising for the use of dosimeter-based RPT measurements in the validation of MC predictedDw.


Assuntos
Partículas beta , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Compostos Radiofarmacêuticos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Radiometria/instrumentação , Partículas beta/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/química , Radioisótopos do Iodo/uso terapêutico , Lutécio/química , Água/química , Radioisótopos
4.
Med Phys ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669453

RESUMO

BACKGROUND: Clinical intensity modulated radiation therapy plans have been described using various complexity metrics to help identify problematic radiotherapy plans. Most previous studies related to the quantification of plan complexity and their utility have relied on institution-specific plans which can be highly variable depending on the machines, planning techniques, delivery modalities, and measurement devices used. In this work, 1723 plans treating one of only four standardized geometries were simultaneously analyzed to investigate how radiation plan complexity metrics vary across four different sets of common objectives. PURPOSE: To assess the treatment plan complexity characteristics of plans developed for Imaging and Radiation Oncology Core (IROC) phantoms. Specifically, to understand the variability in plan complexity between institutions for a common plan objective, and to evaluate how various complexity metrics differentiate relevant groups of plans. METHODS: 1723 plans treating one of four standardized IROC phantom geometries representing four different anatomical sites of treatment were analyzed. For each plan, 22 MLC-descriptive plan complexity metrics were calculated, and principal component analysis (PCA) was applied to the 22 metrics in order to evaluate differences in plan complexity between groups. Across all metrics, pairwise comparisons of the IROC phantom data were made for the following classifications of the data: anatomical phantom treated, treatment planning system (TPS), and the combination of MLC model and treatment planning system. An objective k-means clustering algorithm was also applied to the data to determine if any meaningful distinctions could be made between different subgroups. The IROC phantom database was also compared to a clinical database from the University of Wisconsin-Madison (UW) which included plans treating the same four anatomical sites as the IROC phantoms using a TrueBeam™ STx and Pinnacle3 TPS. RESULTS: The IROC head and neck and spine plans were distinct from the prostate and lung plans based on comparison of the 22 metrics. All IROC phantom plan group complexity metric distributions were highly variable despite all plans being designed for identical geometries and plan objectives. The clusters determined by the k-means algorithm further supported that the IROC head and neck and spine plans involved similar amounts of complexity and were largely distinct from the prostate and lung plans, but no further distinctions could be made. Plan complexity in the head and neck and spine IROC phantom plans were similar to the complexity encountered in the UW clinical plans. CONCLUSIONS: There is substantial variability in plan complexity between institutions when planning for the same objective. For each IROC anatomical phantom treated, the magnitude of variability in plan complexity between institutions is similar to the variability in plan complexity encountered within a single institution database containing several hundred unique clinical plans treating corresponding anatomies in actual patients.

5.
Phys Med Biol ; 69(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171002

RESUMO

Objective.The goal of this work was to assess the potential use of non-contact scintillator imaging dosimetry for tracking delivery in total body irradiation (TBI).Approach. Studies were conducted to measure the time-gated light signals caused by radiation exposure to scintillators that were placed on tissue. The purpose was to assess efficacy in conditions common for TBI, such as the large source to surface distance (SSD) commonly used, the reduced dose rate, the inclusion of a plexiglass spoiler, angle of incidence and effects of peripheral patient support structures. Dose validation work was performed on phantoms that mimicked human tissue optical properties and body geometry. For this work, 1.5 cm diameter scintillating disks were developed and affixed to phantoms under various conditions. A time-gated camera synchronized to the linac pulses was used for imaging. Scintillation intensity was quantified in post processing and the values verified with simultaneous thermolumiescent dosimeter (TLD) measurements. Mean scintillation values in each region were compared to TLD measurements to produce dose response curves, and scatter effects from the spoiler and patient bed were quantified.Main results.The dose determined by scintillators placed in TBI conditions agreed with TLD dose determinations to within 2.7%, and did so repeatedly within 1.0% standard deviation variance. A linear fit between scintillator signal and TLD dose was achieved with anR2= 0.996 across several body sites. Scatter from the patient bed resulted in a maximum increase of 19% in dose.Significance.This work suggests that non-contact scintillator imaging dosimetry could be used to verify dose in real time to patients undergoing TBI at the prescribed long SSD and low dose rate. It also has shown that patient transport stretchers can significantly influence surface dose by increasing scatter.


Assuntos
Contagem de Cintilação , Irradiação Corporal Total , Humanos , Contagem de Cintilação/métodos , Radiometria/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Imagem Óptica/métodos
6.
Med Phys ; 51(4): 2998-3009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060696

RESUMO

BACKGROUND: The static magnetic field present in magnetic resonance (MR)-guided radiotherapy systems can influence dose deposition and charged particle collection in air-filled ionization chambers. Thus, accurately quantifying the effect of the magnetic field on ionization chamber response is critical for output calibration. Formalisms for reference dosimetry in a magnetic field have been proposed, whereby a magnetic field quality conversion factor kB,Q is defined to account for the combined effects of the magnetic field on the radiation detector. Determination of kB,Q in the literature has focused on Monte Carlo simulation studies, with experimental validation limited to only a few ionization chamber models. PURPOSE: The purpose of this study is to experimentally measure kB,Q for 11 ionization chamber models in two commercially available MR-guided radiotherapy systems: Elekta Unity and ViewRay MRIdian. METHODS: Eleven ionization chamber models were characterized in this study: Exradin A12, A12S, A28, and A26, PTW T31010, T31021, and T31022, and IBA FC23-C, CC25, CC13, and CC08. The experimental method to measure kB,Q utilized cross-calibration against a reference Exradin A1SL chamber. Absorbed dose to water was measured for the reference A1SL chamber positioned parallel to the magnetic field with its centroid placed at the machine isocenter at a depth of 10 cm in water for a 10 × 10 cm2 field size at that depth. Output was subsequently measured with the test chamber at the same point of measurement. kB,Q for the test chamber was computed as the ratio of reference dose to test chamber output, with this procedure repeated for each chamber in each MR-guided radiotherapy system. For the high-field 1.5 T Elekta Unity system, the dependence of kB,Q on the chamber orientation relative to the magnetic field was quantified by rotating the chamber about the machine isocenter. RESULTS: Measured kB,Q values for our test dataset of ionization chamber models ranged from 0.991 to 1.002, and 0.995 to 1.004 for the Elekta Unity and ViewRay MRIdian, respectively, with kB,Q tending to increase as the chamber sensitive volume increased. Measured kB,Q values largely agreed within uncertainty to published Monte Carlo simulation data and available experimental data. kB,Q deviation from unity was minimized for ionization chamber orientation parallel or antiparallel to the magnetic field, with increased deviations observed at perpendicular orientations. Overall (k = 1) uncertainty in the experimental determination of the magnetic field quality conversion factor, kB,Q was 0.71% and 0.72% for the Elekta Unity and ViewRay MRIdian systems, respectively. CONCLUSIONS: For a high-field MR-linac, the characterization of ionization chamber performance as angular orientation varied relative to the magnetic field confirmed that the ideal orientation for output calibration is parallel. For most of these chamber models, this study represents the first experimental characterization of chamber performance in clinical MR-linac beams. This is a critical step toward accurate output calibration for MR-guided radiotherapy systems and the measured kB,Q values will be an important reference data source for forthcoming MR-linac reference dosimetry protocols.


Assuntos
Radiometria , Radioterapia Guiada por Imagem , Eficiência Biológica Relativa , Campos Magnéticos , Método de Monte Carlo , Água
7.
J Appl Clin Med Phys ; 25(1): e14229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032123

RESUMO

BACKGROUND: Pulsed reduced dose rate (PRDR) is an emerging radiotherapy technique for recurrent diseases. It is pertinent that the linac beam characteristics are evaluated for PRDR dose rates and a suitable dosimeter is employed for IMRT QA. PURPOSE: This study sought to investigate the pulse characteristics of a 6 MV photon beam during PRDR irradiations on a commercial linac. The feasibility of using EBT3 radiochromic film for use in IMRT QA was also investigated by comparing its response to a commercial diode array phantom. METHODS: A plastic scintillator detector was employed to measure the photon pulse characteristics across nominal repetition rates (NRRs) in the 5-600 MU/min range. Film was irradiated with dose rates in the 0.033-4 Gy/min range to study the dose rate dependence. Five clinical PRDR treatment plans were selected for IMRT QA with the Delta4 phantom and EBT3 film sheets. The planned and measured dose were compared using gamma analysis with a criterion of 3%/3 mm. EBT3 film QA was performed using a cumulative technique and a weighting factor technique. RESULTS: Negligible differences were observed in the pulse width and height data between the investigated NRRs. The pulse width was measured to be 3.15 ± 0.01 µ s $\mu s$ and the PRF was calculated to be 3-357 Hz for the 5-600 MU/min NRRs. The EBT3 film was found to be dose rate independent within 3%. The gamma pass rates (GPRs) were above 99% and 90% for the Delta4 phantom and the EBT3 film using the cumulative QA method, respectively. GPRs as low as 80% were noted for the weighting factor EBT3 QA method. CONCLUSIONS: Altering the NRRs changes the mean dose rate while the instantaneous dose rate remains constant. The EBT3 film was found to be suitable for PRDR dosimetry and IMRT QA with minimal dose rate dependence.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosimetria Fotográfica/métodos , Radiometria , Raios gama , Fótons
8.
J Surg Res ; 294: 82-92, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864962

RESUMO

INTRODUCTION: There have been no significant changes in anal cancer treatment options in 4 decades. In this study, we highlight two preclinical models designed to assess anal cancer treatments. MATERIALS AND METHODS: Transgenic K14E6/E7 mice were treated with 7, 12-dimethylbenz(a)anthracene until anal tumors developed. Mice were treated with localized radiation in addition to chemotherapy (combined-modality therapy [CMT]) and compared to no treatment control (NTC). K14E6/E7 mouse anal spheroids with and without Pik3ca mutations were isolated and treated with vehicle, LY3023414 (LY3) (a drug previously shown to be effective in cancer prevention), CMT, or CMT + LY3. RESULTS: In the in vivo model, there was a significant increase in survival in the CMT group compared to the NTC group (P = 0.0392). In the ex vivo model, there was a significant decrease in the mean diameter of CMT and CMT + LY3-treated spheroids compared to vehicle (P ≤ 0.0001). For LY3 alone compared to vehicle, there was a statistically significant decrease in spheroid size in the K14E6/E7 group without mutation (P = 0.0004). CONCLUSIONS: We have provided proof of concept for two preclinical anal cancer treatment models that allow for the future testing of novel therapies for anal cancer.


Assuntos
Neoplasias do Ânus , Carcinoma de Células Escamosas , Camundongos , Animais , Camundongos Transgênicos , Terapia Combinada , Neoplasias do Ânus/terapia , Neoplasias do Ânus/patologia , Canal Anal/patologia , Carcinoma de Células Escamosas/patologia
9.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832529

RESUMO

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radiometria
10.
Phys Med Biol ; 68(15)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37379858

RESUMO

Objective.In photon counting detectors (PCDs), electric pulses induced by two or more x-ray photons can pile up and result in count losses when their temporal separation is less than the detector dead time. The correction of pulse pile-up-induced count loss is particularly difficult for paralyzable PCDs since a given value of recorded counts can correspond to two different values of true photon interactions. In contrast, charge (energy) integrating detectors work by integrating collected electric charge induced by x-rays over time and do not suffer from pile-up losses. This work introduces an inexpensive readout circuit element to the circuits of PCDs to simultaneously collect time-integrated charge to correct pile-up-induced count losses.Approach.Prototype electronics were constructed to collect time-integrated charges simultaneously with photon counts. A splitter was used to feed the electric signal in parallel to both a digital counter and a charge integrator. After recording PCD counts and integrating collected charge, a lookup table can be generated to map raw counts in the total- and high-energy bins and total charge to estimate pile-up-free true counts. Proof-of-concept imaging experiments were performed with a CdTe-based PCD array to test this method.Main results.The proposed electronics successfully recorded photon counts and time-integrated charge simultaneously, and whereas photon counts exhibited paralyzable pulse pile-up, time-integrated charge using the same electric signal as the counts measurement was linear with x-ray flux. With the proposed correction, paralyzable PCD counts became linear with input flux for both total- and high-energy bins. At high flux levels, uncorrected post-log measurements of PMMA objects severely overestimated radiological path lengths for both energy bins. After the proposed correction, the non-monotonic measurements again became linear with flux and accurately represented the true radiological path lengths. No impact on the spatial resolution was observed after the proposed correction in images of a line-pair test pattern.Significance.Time-integrated charge can be used to correct for pulse pile-up in paralyzable PCDs where analytical solutions may be difficult to use, and integrated charge can be collected simultaneously with counts using inexpensive electronics.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Fótons , Telúrio
11.
Med Phys ; 50(11): 7263-7280, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37370239

RESUMO

BACKGROUND: The Dynamic Collimation System (DCS) has been shown to produce superior treatment plans to uncollimated pencil beam scanning (PBS) proton therapy using an in-house treatment planning system (TPS) designed for research. Clinical implementation of the DCS requires the development and benchmarking of a rigorous dose calculation algorithm that accounts for pencil beam trimming, performs monitor unit calculations to produce deliverable plans at all beam energies, and is ideally implemented with a commercially available TPS. PURPOSE: To present an analytical Pencil bEam TRimming Algorithm (PETRA) for the DCS, with and without its range shifter, implemented in the Astroid TPS (.decimal, Sanford, Florida, USA). MATERIALS: PETRA was derived by generalizing an existing pencil beam dose calculation model to account for the DCS-specific effects of lateral penumbra blurring due to the nickel trimmers in two different planes, integral depth dose variation due to the trimming process, and the presence and absence of the range shifter. Tuning parameters were introduced to enable agreement between PETRA and a measurement-validated Dynamic Collimation Monte Carlo (DCMC) model of the Miami Cancer Institute's IBA Proteus Plus system equipped with the DCS. Trimmer position, spot position, beam energy, and the presence or absence of a range shifter were all used as variables for the characterization of the model. The model was calibrated for pencil beam monitor unit calculations using procedures specified by International Atomic Energy Agency Technical Report Series 398 (IAEA TRS-398). RESULTS: The integral depth dose curves (IDDs) for energies between 70 MeV and 160 MeV among all simulated trimmer combinations, with and without the ranger shifter, agreed between PETRA and DCMC at the 1%/1 mm 1-D gamma criteria for 99.99% of points. For lateral dose profiles, the median 2-D gamma pass rate for all profiles at 1.5%/1.5 mm was 99.99% at the water phantom surface, plateau, and Bragg peak depths without the range shifter and at the surface and Bragg peak depths with the range shifter. The minimum 1.5%/1.5 mm gamma pass rates for the 2-D profiles at the water phantom surface without and with the range shifter were 98.02% and 97.91%, respectively, and, at the Bragg peak, the minimum pass rates were 97.80% and 97.5%, respectively. CONCLUSION: The PETRA model for DCS dose calculations was successfully defined and benchmarked for use in a commercially available TPS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Algoritmos , Imagens de Fantasmas , Método de Monte Carlo , Água
12.
J Appl Clin Med Phys ; 24(8): e13990, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37031363

RESUMO

BACKGROUND: Quality assurance measurement of IMRT/VMAT treatment plans is resource intensive, and other more efficient methods to achieve the same confidence are desirable. PURPOSE: We aimed to analyze treatment plans in the context of the treatment planning systems that created them, in order to predict which ones will fail a standard quality assurance measurement. To do so, we sought to create a tool external to the treatment planning system that could analyze a set of MLC positions and provide information that could be used to calculate various evaluation metrics. METHODS: The tool was created in Python to read in DICOM plan files and determine the beam fluence fraction incident on each of seven different zones, each classified based on the RayStation MLC model. The fractions, termed grid point fractions, were validated by analyzing simple test plans. The average grid point fractions, over all control points for 46 plans were then computed. These values were then compared with gamma analysis pass percentages and median dose differences to determine if any significant correlations existed. RESULTS: Significant correlation was found between the grid point fraction metrics and median dose differences, but not with gamma analysis pass percentages. Correlations were positive or negative, suggesting differing model parameter value sensitivities, as well as potential insight into the treatment planning system dose model. CONCLUSIONS: By decomposing MLC control points into different transmission zones, it is possible to create a metric that predicts whether the analyzed plan will pass a quality assurance measurement from a dose calculation accuracy standpoint. The tool and metrics developed in this work have potential applications in comparing clinical beam models or identifying their weak points. Implementing the tool within a treatment planning system would also provide more potential plan optimization parameters.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Modelos Teóricos , Benchmarking , Imagens de Fantasmas , Dosagem Radioterapêutica
13.
Biomed Phys Eng Express ; 9(4)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37084718

RESUMO

Voxel-level dosimetry based on nuclear medicine images offers patient-specific personalization of radiopharmaceutical therapy (RPT) treatments. Clinical evidence is emerging demonstrating improvements in treatment precision in patients when voxel-level dosimetry is used compared to MIRD. Voxel-level dosimetry requires absolute quantification of activity concentrations in the patient, but images from SPECT/CT scanners are not quantitative and require calibration using nuclear medicine phantoms. While phantom studies can validate a scanner's ability to recover activity concentrations, these studies provide only a surrogate for the true metric of interest: absorbed doses. Measurements using thermoluminescent dosimeters (TLDs) are a versatile and accurate method of measuring absorbed dose. In this work, a TLD probe was manufactured that can fit into currently available nuclear medicine phantoms for the measurement of absorbed dose of RPT agents. Next, 748 MBq of I-131 was administered to a 16 ml hollow source sphere placed in a 6.4 L Jaszczak phantom in addition to six TLD probes, each holding 4 TLD-100 1 × 1 × 1 mm TLD-100 (LiF:Mg,Ti) microcubes. The phantom then underwent a SPECT/CT scan in accordance with a standard SPECT/CT imaging protocol for I-131. The SPECT/CT images were then input into a Monte Carlo based RPT dosimetry platform named RAPID and a three dimensional dose distribution in the phantom was estimated. Additionally, a GEANT4 benchmarking scenario (denoted 'idealized') was created using a stylized representation of the phantom. There was good agreement for all six probes, the differences between measurement and RAPID ranged between -5.5% and 0.9%. The difference between the measured and the idealized GEANT4 scenario was calculated and ranged from -4.3% and -20.5%. This work demonstrates good agreement between TLD measurements and RAPID. In addition, it introduces a novel TLD probe that can be easily introduced into clinical nuclear medicine workflows to provide QA of image-based dosimetry for RPT treatments.


Assuntos
Radioisótopos do Iodo , Compostos Radiofarmacêuticos , Humanos , Fluxo de Trabalho , Radiometria/métodos
14.
Phys Med Biol ; 68(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36944253

RESUMO

Objective.This project aims to provide a novel method for performing dosimetry measurements on TRT radionuclides using a custom-made SPECT/CT compatible phantom, common active and passive detectors, and Monte Carlo simulations. In this work we present a feasibility study using99mTc for a novel approach to obtaining reproducible measurements of absorbed-dose-to-water from radionuclide solutions using active and passive detectors in a custom phantom for the purpose of benchmarking Monte Carlo-based absorbed-dose-to-water estimates.Approach. A cylindrical, acrylic SPECT/CT compatible phantom capable of housing an IBA EFD diode, SNC600c Farmer type ion chamber, and TLD-100 microcubes was designed and built for the purpose of assessing internal absorbed-dose-to-water at various points within a solution of99mTc. The phantom is equipped with removable inserts that allow for numerous detector configurations and is designed to be used for verification of SPECT/CT-based absorbed-dose estimates with traceable detector measurements at multiple locations. Three experiments were conducted with exposure times ranging from 11 to 21 h with starting activities of approximately 10-16 GBq. Measurement data was compared to Monte Carlo simulations using the egs_chamber user code in EGSnrc 2019.Main results. In general, the ionization chamber measurements agreed with the Monte Carlo simulations withink= 1 uncertainty values (±4% and ±7%, respectively). Measurements from the TLDs yielded results withink= 1 agreement of the MC prediction (±6% and ±5%, respectively). Agreement withink= 1 uncertainty (±6% and ±7%, respectively) was obtained for the diode for one of three conducted experiments.Significance. While relatively large uncertainties remain, the agreement between measured and simulated absorbed-doses provides proof of principal that dosimetry of radionuclide solutions with active detectors may be performed using this type of phantom with potential modifications for beta-emitting radionuclides to be introduced in future work.


Assuntos
Dosímetros de Radiação , Água , Estudos de Viabilidade , Radiometria/métodos , Radioisótopos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Método de Monte Carlo , Imagens de Fantasmas
15.
Biomed Phys Eng Express ; 9(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745904

RESUMO

Purpose.To evaluate the impact of CT number calibration and imaging parameter selection on dose calculation accuracy relative to the CT planning process in thoracic treatments for on-board helical CT imaging systems used in helical tomotherapy.Methods and Materials.Direct CT number calibrations were performed with appropriate protocols for each imaging system using an electron density phantom. Large volume and SBRT treatment plans were simulated and optimized for planning CT scans of an anthropomorphic thorax phantom and transferred to registered kVCT and MVCT scans of the phantom as appropriate. Relevant DVH metrics and dose-difference maps were used to evaluate and compare dose calculation accuracy relative to the planning CT based on a variation in imaging parameters applied for the on-board systems.Results.For helical kVCT scans of the thorax phantom, median differences in DVH parameters for the large volume treatment plan were less than ±1% with dose to the target volume either over- or underestimated depending on the imaging parameters utilized for CT number calibration and thorax phantom acquisition. For the lung SBRT plan calculated on helical kVCT scans, median dose differences were up to -2.7% with a more noticeable dependence on parameter selection. For MVCT scans, median dose differences for the large volume plan were within +2% with dose to the target overestimated regardless of the imaging protocol.Conclusion.Accurate dose calculations (median errors of <±1%) using a thorax phantom simulating realistic patient geometry and scatter conditions can be achieved with images acquired with a helical kVCT system on a helical tomotherapy unit. This accuracy is considerably improved relative to that achieved with the MV-based approach. In a clinical setting, careful consideration should be made when selecting appropriate kVCT imaging parameters for this process as dose calculation accuracy was observed to vary with both parameter selection and treatment type.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radioterapia Conformacional/métodos , Tórax
16.
J Appl Clin Med Phys ; 24(3): e13829, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808798

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines (MPPGs) will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: (1) Must and must not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. (2) Should and should not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances. Approved by AAPM's Executive Committee April 28, 2022.


Assuntos
Braquiterapia , Radioterapia (Especialidade) , Humanos , Estados Unidos , Física Médica/educação , Sociedades
17.
Phys Med Biol ; 68(5)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36706460

RESUMO

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Método de Monte Carlo
18.
Med Phys ; 50(2): 1105-1120, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36334024

RESUMO

BACKGROUND: In a recent study, we reported beam quality correction factors, fQ , in carbon ion beams using Monte Carlo (MC) methods for a cylindrical and a parallel-plate ionization chamber (IC). A non-negligible perturbation effect was observed; however, the magnitude of the perturbation correction due to the specific IC subcomponents was not included. Furthermore, the stopping power data presented in the International Commission on Radiation Units and Measurements (ICRU) report 73 were used, whereas the latest stopping power data have been reported in the ICRU report 90. PURPOSE: The aim of this study was to extend our previous work by computing fQ correction factors using the ICRU 90 stopping power data and by reporting IC-specific perturbation correction factors. Possible energy or linear energy transfer (LET) dependence of the fQ correction factor was investigated by simulating both pristine beams and spread-out Bragg peaks (SOBPs). METHODS: The TOol for PArticle Simulation (TOPAS)/GEANT4 MC code was used in this study. A 30 × 30 × 50 cm3 water phantom was simulated with a uniform 10 × 10 cm2 parallel beam incident on the surface. A Farmer-type cylindrical IC (Exradin A12) and two parallel-plate ICs (Exradin P11 and A11) were simulated in TOPAS using the manufacturer-provided geometrical drawings. The fQ correction factor was calculated in pristine carbon ion beams in the 150-450 MeV/u energy range at 2 cm depth and in the middle of the flat region of four SOBPs. The kQ correction factor was calculated by simulating the fQo correction factor in a 60 Co beam at 5 cm depth. The perturbation correction factors due to the presence of the individual IC subcomponents, such as the displacement effect in the air cavity, collecting electrode, chamber wall, and chamber stem, were calculated at 2 cm depth for monoenergetic beams only. Additionally, the mean dose-averaged and track-averaged LET was calculated at the depths at which the fQ was calculated. RESULTS: The ICRU 90 fQ correction factors were reported. The pdis correction factor was found to be significant for the cylindrical IC with magnitudes up to 1.70%. The individual perturbation corrections for the parallel-plate ICs were <1.0% except for the A11 pcel correction at the lowest energy. The fQ correction for the P11 IC exhibited an energy dependence of >1.00% and displayed differences up to 0.87% between pristine beams and SOBPs. Conversely, the fQ for A11 and A12 displayed a minimal energy dependence of <0.50%. The energy dependence was found to manifest in the LET dependence for the P11 IC. A statistically significant LET dependence was found only for the P11 IC in pristine beams only with a magnitude of <1.10%. CONCLUSIONS: The perturbation and kQ correction factor should be calculated for the specific IC to be used in carbon ion beam reference dosimetry as a function of beam quality.


Assuntos
Transferência Linear de Energia , Radiometria , Radiometria/métodos , Eficiência Biológica Relativa , Carbono/uso terapêutico , Método de Monte Carlo
19.
Cureus ; 14(9): e29244, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36277579

RESUMO

Purpose To evaluate the imaging performance of an on-board helical kilovoltage computed tomography (kVCT) system mounted on a helical tomotherapy unit for various imaging parameters and setup conditions. Methods Images of a commonly used computed tomography (CT) image quality phantom were acquired while varying the selection of available parameters (anatomy, mode, body size) as well as phantom positioning and size. Image quality metrics (IQM) including noise, uniformity, contrast, CT number constancy, and spatial resolution were compared for parameter and setup variations.  Results The use of fine mode improved noise and contrast metrics by 20-30% compared to normal mode and by nearly a factor of two compared to the coarse mode for otherwise identical protocols. Uniformity, CT number constancy, and spatial resolution were also improved for fine mode. Thorax and pelvis anatomy protocols improved noise, uniformity, and contrast metrics by 10-20% compared to images acquired with head protocols. No significant differences in CT number constancy or spatial resolution were observed regardless of anatomy choice. Increasing body size (milliampere second (mAs)/rotation) improved each image quality metric. Vertical and lateral phantom shifts of up to ±6 cm degraded noise and contrast metrics by up to 30% relative to the isocenter while also worsening uniformity and CT number constancy. IQM were also degraded substantially with the use of annuli to increase the phantom diameter (32 cm vs. 20 cm). Despite variations in image characteristics among the investigated changes, most metrics were within manufacturer specifications when applicable. Conclusion This work demonstrates the dependence of image quality on parameter selection and setup conditions for a helical kVCT system utilized in image-guided and adaptive helical tomotherapy treatments. While the overall image quality is robust to variations in imaging parameters, care should be taken when selecting parameters as patient size increases or positioning moves from the isocenter to ensure adequate image quality is still achieved.

20.
Med Phys ; 49(11): 6739-6764, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36000424

RESUMO

Practical guidelines that are not explicit in the TG-51 protocol and its Addendum for photon beam dosimetry are presented for the implementation of the TG-51 protocol for reference dosimetry of external high-energy photon and electron beams. These guidelines pertain to: (i) measurement of depth-ionization curves required to obtain beam quality specifiers for the selection of beam quality conversion factors, (ii) considerations for the dosimetry system and specifications of a reference-class ionization chamber, (iii) commissioning a dosimetry system and frequency of measurements, (iv) positioning/aligning the water tank and ionization chamber for depth ionization and reference dose measurements, (v) requirements for ancillary equipment needed to measure charge (triaxial cables and electrometers) and to correct for environmental conditions, and (vi) translation from dose at the reference depth to that at the depth required by the treatment planning system. Procedures are identified to achieve the most accurate results (errors up to 8% have been observed) and, where applicable, a commonly used simplified procedure is described and the impact on reference dosimetry measurements is discussed so that the medical physicist can be informed on where to allocate resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA