Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 98(5): 1475, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28263380

RESUMO

Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582).


Assuntos
Organismos Aquáticos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Ecossistema , Água Doce , Filogenia
2.
Environ Toxicol Chem ; 35(5): 1183-94, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26395963

RESUMO

Fluridone and copper sulphate are often used for controlling macrophytes and algae in aquaculture ponds. The present study examined the ecological effects of these chemicals on macrophyte, phytoplankton, and zooplankton biomass; plankton community structure; water quality parameters; and fish survival and yield in catfish culture ponds using a randomized complete block design. The estimated half-life of fluridone in the individual ponds ranged from 1.6 d to 10.8 d. Free copper ion activity in ponds treated with copper sulphate was dynamic, ranging from pCu of 7.7 to 8.9 after each application and decreasing to approximately 12 (1 × 10(-12) M) within 1 wk after each application, approaching observed values in control ponds (pCu = 12.3-13.4). No difference in macrophyte biomass was observed among treatments. Fluridone and copper treatments elicited different responses within the phytoplankton community. Copper treatments reduced Cyanophyta biomass but increased biomass of more tolerant taxa among the Chlorophyta and Chrysophyta. Fluridone treatments reduced total phytoplankton biomass including Cyanophyta and increased the sensitivity of Chlorophyta and Chrysophyta to copper. Copper also affected zooplankton community composition as a result of direct toxic effects on sensitive zooplankton taxa (e.g., Cladocera), whereas Copepoda biomass in copper-treated ponds exceeded that in controls. Catfish survival and yield were not significantly different among treatments. The results of the present study suggest that fluridone and copper interact at realistic application rates, increasing the ability to control algae compared with treatments where they are applied alone.


Assuntos
Peixes-Gato , Sulfato de Cobre/toxicidade , Piridonas/toxicidade , Animais , Aquicultura , Biomassa , Clorófitas/efeitos dos fármacos , Chrysophyta/efeitos dos fármacos , Meia-Vida , Fitoplâncton/efeitos dos fármacos , Lagoas , Qualidade da Água , Zooplâncton/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA