Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 116(3): 433-444, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30661666

RESUMO

Cyclic peptides (CPs) are a promising class of molecules for drug development, particularly as inhibitors of protein-protein interactions. Predicting low-energy structures and global structural ensembles of individual CPs is critical for the design of bioactive molecules, but these are challenging to predict and difficult to verify experimentally. In our previous work, we used explicit-solvent molecular dynamics simulations with enhanced sampling methods to predict the global structural ensembles of cyclic hexapeptides containing different permutations of glycine, alanine, and valine. One peptide, cyclo-(VVGGVG) or P7, was predicted to be unusually well structured. In this work, we synthesized P7, along with a less well-structured control peptide, cyclo-(VVGVGG) or P6, and characterized their global structural ensembles in water using NMR spectroscopy. The NMR data revealed a structural ensemble similar to the prediction for P7 and showed that P6 was indeed much less well-structured than P7. We then simulated and experimentally characterized the global structural ensembles of several P7 analogs and discovered that ß-branching at one critical position within P7 is important for overall structural stability. The simulations allowed deconvolution of thermodynamic factors that underlie this structural stabilization. Overall, the excellent correlation between simulation and experimental data indicates that our simulation platform will be a promising approach for designing well-structured CPs and also for understanding the complex interactions that control the conformations of constrained peptides and other macrocycles.


Assuntos
Modelos Moleculares , Oligopeptídeos/química , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Conformação Proteica , Estabilidade Proteica
2.
J Phys Chem B ; 122(14): 3908-3919, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29589926

RESUMO

Cyclic peptides are a promising class of molecules for unique applications. Unfortunately, cyclic peptide design is severely limited by the difficulty in predicting the conformations they will adopt in solution. In this work, we use explicit-solvent molecular dynamics simulations to design well-structured cyclic peptides by studying their sequence-structure relationships. Critical to our approach is an enhanced sampling method that exploits the essential transitional motions of cyclic peptides to efficiently sample their conformational space. We simulated a range of cyclic pentapeptides from all-glycine to a library of cyclo-(X1X2AAA) peptides to map their conformational space and determine cooperative effects of neighboring residues. By combining the results from all cyclo-(X1X2AAA) peptides, we developed a scoring function to predict the structural preferences for X1-X2 residues within cyclic pentapeptides. Using this scoring function, we designed a cyclic pentapeptide, cyclo-(GNSRV), predicted to be well structured in aqueous solution. Subsequent circular dichroism and NMR spectroscopy revealed that this cyclic pentapeptide is indeed well structured in water, with a nuclear Overhauser effect and J-coupling values consistent with the predicted structure.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Conformação Proteica
3.
J Am Chem Soc ; 139(23): 7792-7802, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28414223

RESUMO

Autophagy is an essential pathway by which cellular and foreign material are degraded and recycled in eukaryotic cells. Induction of autophagy is a promising approach for treating diverse human diseases, including neurodegenerative disorders and infectious diseases. Here, we report the use of a diversity-oriented stapling approach to produce autophagy-inducing peptides that are intrinsically cell-penetrant. These peptides induce autophagy at micromolar concentrations in vitro, have aggregate-clearing activity in a cellular model of Huntington's disease, and induce autophagy in vivo. Unexpectedly, the solution structure of the most potent stapled peptide, DD5-o, revealed an α-helical conformation in methanol, stabilized by an unusual (i,i+3) staple which cross-links two d-amino acids. We also developed a novel assay for cell penetration that reports exclusively on cytosolic access and used it to quantitatively compare the cell penetration of DD5-o and other autophagy-inducing peptides. These new, cell-penetrant autophagy inducers and their molecular details are critical advances in the effort to understand and control autophagy. More broadly, diversity-oriented stapling may provide a promising alternative to polycationic sequences as a means for rendering peptides more cell-penetrant.


Assuntos
Autofagia/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA