Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 53(19): 6867-88, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20822181

RESUMO

A potent class of anticancer, human farnesyltransferase (hFTase) inhibitors has been identified by "piggy-backing" on potent, antimalarial inhibitors of Plasmodium falciparum farnesyltransferase (PfFTase). On the basis of a 4-fold substituted ethylenediamine scaffold, the inhibitors are structurally simple and readily derivatized, facilitating the extensive structure-activity relationship (SAR) study reported herein. Our most potent inhibitor is compound 1f, which exhibited an in vitro hFTase IC(50) value of 25 nM and a whole cell H-Ras processing IC(50) value of 90 nM. Moreover, it is noteworthy that several of our inhibitors proved highly selective for hFTase (up to 333-fold) over the related prenyltransferase enzyme geranylgeranyltransferase-I (GGTase-I). A crystal structure of inhibitor 1a co-crystallized with farnesyl pyrophosphate (FPP) in the active site of rat FTase illustrates that the para-benzonitrile moiety of 1a is stabilized by a π-π stacking interaction with the Y361ß residue, suggesting a structural explanation for the observed importance of this component of our inhibitors.


Assuntos
Antineoplásicos/síntese química , Etilenodiaminas/síntese química , Farnesiltranstransferase/antagonistas & inibidores , Modelos Moleculares , Compostos de Anilina/síntese química , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Desenho de Fármacos , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Humanos , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Nitrilas/farmacologia , Plasmodium falciparum/enzimologia , Ligação Proteica , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
2.
Curr Opin Chem Biol ; 14(3): 341-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20430687

RESUMO

Many biological processes are regulated by protein-protein interactions (PPIs) and as such their misregulation can cause a multitude of diseases. Often the interactions between large proteins are mediated by small protein secondary structural domains, which project a minimum number of specifically arranged residues into the complementary surface of an interacting protein. Nature has the advantage of time, and over time has optimized those secondary structures, such as alpha-helices, beta-sheets and beta-strands, found at the interfaces of PPIs. Inspired by Nature's extensive optimization, chemists have used these secondary structures as templates in the design of small molecules that may act as structural and functional mimics of large rhenylogically organized protein secondary structures. Herein recent applications of the indane, terphenyl, terphenyl-inspired templates, polycyclic ether and benzodiazepinedione scaffolds, as non-peptidic, small molecule alpha-helix mimetics, to disrupt PPIs are detailed.


Assuntos
Materiais Biomiméticos/química , Mapeamento de Interação de Proteínas/métodos , Bibliotecas de Moléculas Pequenas/química , Benzodiazepinonas/química , Éteres Cíclicos/química , Indanos/química , Compostos de Terfenil/química
3.
Chem Biol ; 16(2): 181-92, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19246009

RESUMO

Protein farnesyltransferase (FTase) catalyzes an essential posttranslational lipid modification of more than 60 proteins involved in intracellular signal transduction networks. FTase inhibitors have emerged as a significant target for development of anticancer therapeutics and, more recently, for the treatment of parasitic diseases caused by protozoan pathogens, including malaria (Plasmodium falciparum). We present the X-ray crystallographic structures of complexes of mammalian FTase with five inhibitors based on an ethylenediamine scaffold, two of which exhibit over 1000-fold selective inhibition of P. falciparum FTase. These structures reveal the dominant determinants in both the inhibitor and enzyme that control binding and selectivity. Comparison to a homology model constructed for the P. falciparum FTase suggests opportunities for further improving selectivity of a new generation of antimalarial inhibitors.


Assuntos
Antimaláricos/química , Antineoplásicos/química , Inibidores Enzimáticos/química , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/química , Animais , Antimaláricos/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Etilenodiaminas/química , Farnesiltranstransferase/metabolismo , Humanos , Plasmodium falciparum/enzimologia , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ratos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Org Lett ; 11(1): 25-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19035840

RESUMO

The development of small molecules that disrupt protein-protein interactions is a key goal in addressing a number of disease states. The alpha-helix is commonly found at protein interaction interfaces and has been the focus of substantial small molecule mimetic efforts. One of the primary drawbacks of many small molecule alpha-helix mimetics is their hydrophobic core structures. To address this problem we have developed a novel scaffold based on a more water soluble 5-6-5 imidazole-phenyl-thiazole core. An inhibitor of this class has been shown to disrupt the Cdc42/Dbs protein-protein interaction at micromolar concentrations and may be useful in overcoming Cdc42-induced tumor resistance to anticancer therapies.


Assuntos
Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Imidazóis/síntese química , Imidazóis/farmacologia , Tiazóis/síntese química , Tiazóis/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Materiais Biomiméticos/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Imidazóis/química , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tiazóis/química , Proteína cdc42 de Ligação ao GTP/síntese química
5.
J Med Chem ; 51(17): 5176-97, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18686940

RESUMO

New chemotherapeutics are urgently needed to combat malaria. We previously reported on a novel series of antimalarial, ethylenediamine-based inhibitors of protein farnesyltransferase (PFT). In the current study, we designed and synthesized a series of second generation inhibitors, wherein the core ethylenediamine scaffold was varied in order to examine both the homology model of Plasmodium falciparum PFT (PfPFT) and our predicted inhibitor binding mode. We identified several PfPFT inhibitors (PfPFTIs) that are selective for PfPFT versus the mammalian isoform of the enzyme (up to 136-fold selectivity), that inhibit the malarial enzyme with IC50 values down to 1 nM, and that block the growth of P. falciparum in infected whole cells (erythrocytes) with ED50 values down to 55 nM. The structure-activity data for these second generation, ethylenediamine-inspired PFT inhibitors were rationalized by consideration of the X-ray crystal structure of mammalian PFT and the homology model of the malarial enzyme.


Assuntos
Antimaláricos/química , Etilenodiaminas/química , Farnesiltranstransferase/antagonistas & inibidores , Plasmodium/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Etilenodiaminas/farmacologia , Humanos , Concentração Inibidora 50 , Plasmodium/crescimento & desenvolvimento , Relação Estrutura-Atividade
6.
J Med Chem ; 49(19): 5710-27, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16970397

RESUMO

Third world nations require immediate access to inexpensive therapeutics to counter the high mortality inflicted by malaria. Here, we report a new class of antimalarial protein farnesyltransferase (PFT) inhibitors, designed with specific emphasis on simple molecular architecture, to facilitate easy access to therapies based on this recently validated antimalarial target. This novel series of compounds represents the first Plasmodium falciparum selective PFT inhibitors reported (up to 145-fold selectivity), with lead inhibitors displaying excellent in vitro activity (IC(50) < 1 nM) and toxicity to cultured parasites at low concentrations (ED(50) < 100 nM). Initial studies of absorption, metabolism, and oral bioavailability are reported.


Assuntos
Compostos de Anilina/síntese química , Antimaláricos/síntese química , Farnesiltranstransferase/antagonistas & inibidores , Imidazóis/síntese química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Administração Oral , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Sítios de Ligação , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular , Humanos , Imidazóis/química , Imidazóis/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Nitrilas/síntese química , Nitrilas/química , Nitrilas/farmacologia , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA