Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 7: 11857, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282871

RESUMO

Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.

2.
J Phys Chem A ; 117(50): 13513-23, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24131239

RESUMO

Understanding electron-transfer (ET) processes in dye-sensitized solar cells (DSSCs) is crucial to improving their device performance. Recently, covalent attachment of dye molecules to mesoporous semiconductor nanoparticle films via molecular linkers has been employed to increase the stability of DSSC photoanodes. The power conversion efficiency (PCE) of these DSSCs, however, is lower than DSSCs with conventional unmodified photoanodes in this study. Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been used to study the electron injection process from N719 dye molecules to TiO2 nanoparticles (NPs) in DSSC photoanodes with and without the presence of two silane-based linker molecules: 3-aminopropyltriethoxysilane (APTES) and p-aminophenyltrimethoxysilane (APhS). Ultrafast biphasic electron injection kinetics were observed in all three photoanodes using a 530 nm pump wavelength and 860 nm probe wavelength. Both the slow and fast decay components, attributed to electron injection from singlet and triplet excited states, respectively, of the N719 dye to the TiO2 conduction band, are hindered by the molecular linkers. The hindering effect is less significant with the APhS linker than the APTES linker and is more significant for the singlet-state channel than the triplet-state one. Electron injection from the vibrationally excited states is less affected by the linkers. The spectroscopic results are interpreted on the basis of the standard ET theory and can be used to guide selection of molecular linkers for DSSCs with better device performance. Other factors that affect the efficiency and stability of the DSSCs are also discussed. The relatively lower PCE of the covalently attached photoanodes is attributed to the multilayer and aggregation of the dye molecules as well as the linkers.

3.
Nano Lett ; 13(6): 2423-30, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23668724

RESUMO

We report the phase transformation of hematite (α-Fe2O3) single crystal nanowires to crystalline FeS nanotubes using sulfurization with H2S gas at relatively low temperatures. Characterization indicates that phase pure hexagonal FeS nanotubes were formed. Time-series sulfurization experiments suggest epitaxial growth of FeS as a shell layer on hematite. This is the first report of hollow, crystalline FeS nanotubes with NiAs structure and also on the Kirkendall effect in solid-gas reactions with nanowires involving sulfurization.

4.
Nano Lett ; 11(10): 4168-75, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21894935

RESUMO

We synthesize vertically oriented core-shell nanowires with substoichiometric MoO(3) cores of ∼20-50 nm and conformal MoS(2) shells of ∼2-5 nm. The core-shell architecture, produced by low-temperature sulfidization, is designed to utilize the best properties of each component material while mitigating their deficiencies. The substoichiometric MoO(3) core provides a high aspect ratio foundation and enables facile charge transport, while the conformal MoS(2) shell provides excellent catalytic activity and protection against corrosion in strong acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA