Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Jpn J Radiol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088009

RESUMO

Multiple Myeloma (MM) is a hematological malignancy affecting bone marrow, most frequently in elderly men. Imaging has a crucial role in this disease. Recently, whole-body MRI has been introduced and it has gained growing interest due to is high sensitivity and specificity in evaluating bone marrow involvement in MM. Diffusion-weighted sequences (DWI) with apparent diffusion coefficient (ADC) maps have emerged as the most sensitive technique to evaluate patients with MM, both in the pre- and post-treatment setting. Aim of this review is to provide an overview of the role and main imaging findings of whole-body MRI in MM.

2.
Diagn Interv Radiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953330

RESUMO

Although artificial intelligence (AI) methods hold promise for medical imaging-based prediction tasks, their integration into medical practice may present a double-edged sword due to bias (i.e., systematic errors). AI algorithms have the potential to mitigate cognitive biases in human interpretation, but extensive research has highlighted the tendency of AI systems to internalize biases within their model. This fact, whether intentional or not, may ultimately lead to unintentional consequences in the clinical setting, potentially compromising patient outcomes. This concern is particularly important in medical imaging, where AI has been more progressively and widely embraced than any other medical field. A comprehensive understanding of bias at each stage of the AI pipeline is therefore essential to contribute to developing AI solutions that are not only less biased but also widely applicable. This international collaborative review effort aims to increase awareness within the medical imaging community about the importance of proactively identifying and addressing AI bias to prevent its negative consequences from being realized later. The authors began with the fundamentals of bias by explaining its different definitions and delineating various potential sources. Strategies for detecting and identifying bias were then outlined, followed by a review of techniques for its avoidance and mitigation. Moreover, ethical dimensions, challenges encountered, and prospects were discussed.

3.
Eur Radiol Exp ; 8(1): 81, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046535

RESUMO

Starting from Picasso's quote ("Computers are useless. They can only give you answers"), we discuss the introduction of generative artificial intelligence (AI), including generative adversarial networks (GANs) and transformer-based architectures such as large language models (LLMs) in radiology, where their potential in reporting, image synthesis, and analysis is notable. However, the need for improvements, evaluations, and regulations prior to clinical use is also clear. Integration of LLMs into clinical workflow needs cautiousness, to avoid or at least mitigate risks associated with false diagnostic suggestions. We highlight challenges in synthetic image generation, inherent biases in AI models, and privacy concerns, stressing the importance of diverse training datasets and robust data privacy measures. We examine the regulatory landscape, including the 2023 Executive Order on AI in the United States and the 2024 AI Act in the European Union, which set standards for AI applications in healthcare. This manuscript contributes to the field by emphasizing the necessity of maintaining the human element in medical procedures while leveraging generative AI, advocating for a "machines-in-the-loop" approach.


Assuntos
Inteligência Artificial , Humanos , Radiologia
4.
Eur Radiol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014086

RESUMO

OBJECTIVE: To assess the methodological quality of radiomics-based models in endometrial cancer using the radiomics quality score (RQS) and METhodological radiomICs score (METRICS). METHODS: We systematically reviewed studies published by October 30th, 2023. Inclusion criteria were original radiomics studies on endometrial cancer using CT, MRI, PET, or ultrasound. Articles underwent a quality assessment by novice and expert radiologists using RQS and METRICS. The inter-rater reliability for RQS and METRICS among radiologists with varying expertise was determined. Subgroup analyses were performed to assess whether scores varied according to study topic, imaging technique, publication year, and journal quartile. RESULTS: Sixty-eight studies were analysed, with a median RQS of 11 (IQR, 9-14) and METRICS score of 67.6% (IQR, 58.8-76.0); two different articles reached maximum RQS of 19 and METRICS of 90.7%, respectively. Most studies utilised MRI (82.3%) and machine learning methods (88.2%). Characterisation and recurrence risk stratification were the most explored outcomes, featured in 35.3% and 19.1% of articles, respectively. High inter-rater reliability was observed for both RQS (ICC: 0.897; 95% CI: 0.821, 0.946) and METRICS (ICC: 0.959; 95% CI: 0.928, 0.979). Methodological limitations such as lack of external validation suggest areas for improvement. At subgroup analyses, no statistically significant difference was noted. CONCLUSIONS: Whilst using RQS, the quality of endometrial cancer radiomics research was apparently unsatisfactory, METRICS depicts a good overall quality. Our study highlights the need for strict compliance with quality metrics. Adhering to these quality measures can increase the consistency of radiomics towards clinical application in the pre-operative management of endometrial cancer. CLINICAL RELEVANCE STATEMENT: Both the RQS and METRICS can function as instrumental tools for identifying different methodological deficiencies in endometrial cancer radiomics research. However, METRICS also reflected a focus on the practical applicability and clarity of documentation. KEY POINTS: The topic of radiomics currently lacks standardisation, limiting clinical implementation. METRICS scores were generally higher than the RQS, reflecting differences in the development process and methodological content. A positive trend in METRICS score may suggest growing attention to methodological aspects in radiomics research.

5.
Eur J Radiol ; 177: 111546, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875749

RESUMO

PURPOSE: To evaluate the impact of a four-month training program on radiology residents' diagnostic accuracy in assessing deep myometrial invasion (DMI) in endometrial cancer (EC) using MRI. METHOD: Three radiology residents with limited EC MRI experience participated in the training program, which included conventional didactic sessions, case-centric workshops, and interactive classes. Utilizing a training dataset of 120 EC MRI scans, trainees independently assessed subsets of cases over five reading sessions. Each subset consisted of 30 scans, the first and the last with the same cases, for a total of 150 reads. Diagnostic accuracy metrics, assessment time (rounded to the nearest minute), and confidence levels (using a 5-point Likert scale) were recorded. The learning curve was obtained plotting the diagnostic accuracy of the three trainees and the average over the subsets. Anatomopathological results served as the reference standard for DMI presence. RESULTS: The three trainees exhibited heterogeneous starting point, with a learning curve and a trend to more homogeneous performance with training. The diagnostic accuracy of the average trainee raised from 64 % (56 %-76 %) to 88 % (80 %-94 %) across the five subsets (p < 0.001). Reductions in assessment time (5.92 to 4.63 min, p < 0.018) and enhanced confidence levels (3.58 to 3.97, p = 0.12) were observed. Improvements in sensitivity, specificity, positive predictive value, and negative predictive value were noted, particularly for specificity which raised from 56 % (41 %-68 %) in the first to 86 % (74 %-94 %) in the fifth subset (p = 0.16). Although not reaching statistical significance, these advancements aligned the trainees with literature performance benchmarks. CONCLUSIONS: The structured training program significantly enhanced radiology residents' diagnostic accuracy in assessing DMI for EC on MRI, emphasizing the effectiveness of active case-based training in refining oncologic imaging skills within radiology residency curricula.


Assuntos
Competência Clínica , Neoplasias do Endométrio , Internato e Residência , Curva de Aprendizado , Imageamento por Ressonância Magnética , Miométrio , Invasividade Neoplásica , Radiologia , Humanos , Feminino , Neoplasias do Endométrio/diagnóstico por imagem , Neoplasias do Endométrio/patologia , Imageamento por Ressonância Magnética/métodos , Radiologia/educação , Miométrio/diagnóstico por imagem , Miométrio/patologia , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
6.
World J Pediatr ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935233

RESUMO

BACKGROUND: The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity and mortality. While both morphological and non-morphological magnetic resonance imaging techniques can give important information concerning tumor characterization, grading, and patient prognosis, increasing evidence in recent years has highlighted the need for personalized treatment and the development of quantitative imaging parameters that can predict the nature of the lesion and its possible evolution. For this purpose, radiomics and the use of artificial intelligence software, aimed at obtaining valuable data from images beyond mere visual observation, are gaining increasing importance. This brief review illustrates the current state of the art of this new imaging approach and its contributions to understanding CNS tumors in children. DATA SOURCES: We searched the PubMed, Scopus, and Web of Science databases using the following key search terms: ("radiomics" AND/OR "artificial intelligence") AND ("pediatric AND brain tumors"). Basic and clinical research literature related to the above key research terms, i.e., studies assessing the key factors, challenges, or problems of using radiomics and artificial intelligence in pediatric brain tumors management, was collected. RESULTS: A total of 63 articles were included. The included ones were published between 2008 and 2024. Central nervous tumors are crucial in pediatrics due to their high frequency and impact on disease and treatment. MRI serves as the cornerstone of neuroimaging, providing cellular, vascular, and functional information in addition to morphological features for brain malignancies. Radiomics can provide a quantitative approach to medical imaging analysis, aimed at increasing the information obtainable from the pixels/voxel grey-level values and their interrelationships. The "radiomic workflow" involves a series of iterative steps for reproducible and consistent extraction of imaging data. These steps include image acquisition for tumor segmentation, feature extraction, and feature selection. Finally, the selected features, via training predictive model (CNN), are used to test the final model. CONCLUSIONS: In the field of personalized medicine, the application of radiomics and artificial intelligence (AI) algorithms brings up new and significant possibilities. Neuroimaging yields enormous amounts of data that are significantly more than what can be gained from visual studies that radiologists can undertake on their own. Thus, new partnerships with other specialized experts, such as big data analysts and AI specialists, are desperately needed. We believe that radiomics and AI algorithms have the potential to move beyond their restricted use in research to clinical applications in the diagnosis, treatment, and follow-up of pediatric patients with brain tumors, despite the limitations set out.

7.
Eur Radiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780764

RESUMO

MRI has gained prominence in the diagnostic workup of prostate cancer (PCa) patients, with the Prostate Imaging Reporting and Data System (PI-RADS) being widely used for cancer detection. Beyond PI-RADS, other MRI-based scoring tools have emerged to address broader aspects within the PCa domain. However, the multitude of available MRI-based grading systems has led to inconsistencies in their application within clinical workflows. The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) assesses the likelihood of clinically significant radiological changes of PCa during active surveillance, and the Prostate Imaging for Local Recurrence Reporting (PI-RR) scoring system evaluates the risk of local recurrence after whole-gland therapies with curative intent. Underlying any system is the requirement to assess image quality using the Prostate Imaging Quality Scoring System (PI-QUAL). This article offers practicing radiologists a comprehensive overview of currently available scoring systems with clinical evidence supporting their use for managing PCa patients to enhance consistency in interpretation and facilitate effective communication with referring clinicians. KEY POINTS: Assessing image quality is essential for all prostate MRI interpretations and the PI-QUAL score represents  the standardized tool for this purpose. Current urological clinical guidelines for prostate cancer diagnosis and localization recommend adhering to the PI-RADS recommendations. The PRECISE and PI-RR scoring systems can be used for assessing radiological changes of prostate cancer during active surveillance and the likelihood of local recurrence after radical treatments respectively.

8.
Eur Radiol Exp ; 8(1): 72, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740707

RESUMO

Overall quality of radiomics research has been reported as low in literature, which constitutes a major challenge to improve. Consistent, transparent, and accurate reporting is critical, which can be accomplished with systematic use of reporting guidelines. The CheckList for EvaluAtion of Radiomics research (CLEAR) was previously developed to assist authors in reporting their radiomic research and to assist reviewers in their evaluation. To take full advantage of CLEAR, further explanation and elaboration of each item, as well as literature examples, may be useful. The main goal of this work, Explanation and Elaboration with Examples for CLEAR (CLEAR-E3), is to improve CLEAR's usability and dissemination. In this international collaborative effort, members of the European Society of Medical Imaging Informatics-Radiomics Auditing Group searched radiomics literature to identify representative reporting examples for each CLEAR item. At least two examples, demonstrating optimal reporting, were presented for each item. All examples were selected from open-access articles, allowing users to easily consult the corresponding full-text articles. In addition to these, each CLEAR item's explanation was further expanded and elaborated. For easier access, the resulting document is available at https://radiomic.github.io/CLEAR-E3/ . As a complementary effort to CLEAR, we anticipate that this initiative will assist authors in reporting their radiomics research with greater ease and transparency, as well as editors and reviewers in reviewing manuscripts.Relevance statement Along with the original CLEAR checklist, CLEAR-E3 is expected to provide a more in-depth understanding of the CLEAR items, as well as concrete examples for reporting and evaluating radiomic research.Key points• As a complementary effort to CLEAR, this international collaborative effort aims to assist authors in reporting their radiomics research, as well as editors and reviewers in reviewing radiomics manuscripts.• Based on positive examples from the literature selected by the EuSoMII Radiomics Auditing Group, each CLEAR item explanation was further elaborated in CLEAR-E3.• The resulting explanation and elaboration document with examples can be accessed at  https://radiomic.github.io/CLEAR-E3/ .


Assuntos
Lista de Checagem , Humanos , Europa (Continente) , Radiologia/normas , Diagnóstico por Imagem/normas , Radiômica
12.
IEEE J Transl Eng Health Med ; 12: 268-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410182

RESUMO

Executive functions (EFs) are neurocognitive processes planning and regulating daily life actions. Performance of two simultaneous tasks, requiring the same cognitive resources, lead to a cognitive fatigue. Several studies investigated cognitive-motor task and the interference during walking, highlighting an increasing risk of falls especially in elderly and people with neurological diseases. A few studies instrumentally explored relationship between activation-no-activation of two EFs (working memory and inhibition) and spatial-temporal gait parameters. Aim of our study was to detect activation of inhibition and working memory during progressive difficulty levels of cognitive tasks and spontaneous walking using, respectively, wireless electroencephalography (EEG) and 3D-gait analysis. Thirteen healthy subjects were recruited. Two cognitive tasks were performed, activating inhibition (Go-NoGo) and working memory (N-back). EEG features (absolute and relative power in different bands) and kinematic parameters (7 spatial-temporal ones and Gait Variable Score for 9 range of motion of lower limbs) were analyzed. A significant decrease of stride length and an increase of external-rotation of foot progression were found during dual task with Go-NoGo. Moreover, a significant correlation was found between the relative power in the delta band at channels Fz, C4 and progressive difficulty levels of Go-NoGo (activating inhibition) during walking, whereas working memory showed no correlation. This study reinforces the hypothesis of the prevalent involvement of inhibition with respect to working memory during dual task walking and reveals specific kinematic adaptations. The foundations for EEG-based monitoring of cognitive processes involved in gait are laid. Clinical and Translational Impact Statement: Clinical and instrumental evaluation and training of executive functions (as inhibition), during cognitive-motor task, could be useful for rehabilitation treatment of gait disorder in elderly and people with neurological disease.


Assuntos
Função Executiva , Análise da Marcha , Humanos , Idoso , Função Executiva/fisiologia , Estudos de Viabilidade , Marcha/fisiologia , Caminhada/fisiologia
13.
Insights Imaging ; 15(1): 54, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411750

RESUMO

OBJECTIVE: To systematically review radiomic feature reproducibility and model validation strategies in recent studies dealing with CT and MRI radiomics of bone and soft-tissue sarcomas, thus updating a previous version of this review which included studies published up to 2020. METHODS: A literature search was conducted on EMBASE and PubMed databases for papers published between January 2021 and March 2023. Data regarding radiomic feature reproducibility and model validation strategies were extracted and analyzed. RESULTS: Out of 201 identified papers, 55 were included. They dealt with radiomics of bone (n = 23) or soft-tissue (n = 32) tumors. Thirty-two (out of 54 employing manual or semiautomatic segmentation, 59%) studies included a feature reproducibility analysis. Reproducibility was assessed based on intra/interobserver segmentation variability in 30 (55%) and geometrical transformations of the region of interest in 2 (4%) studies. At least one machine learning validation technique was used for model development in 34 (62%) papers, and K-fold cross-validation was employed most frequently. A clinical validation of the model was reported in 38 (69%) papers. It was performed using a separate dataset from the primary institution (internal test) in 22 (40%), an independent dataset from another institution (external test) in 14 (25%) and both in 2 (4%) studies. CONCLUSIONS: Compared to papers published up to 2020, a clear improvement was noted with almost double publications reporting methodological aspects related to reproducibility and validation. Larger multicenter investigations including external clinical validation and the publication of databases in open-access repositories could further improve methodology and bring radiomics from a research area to the clinical stage. CRITICAL RELEVANCE STATEMENT: An improvement in feature reproducibility and model validation strategies has been shown in this updated systematic review on radiomics of bone and soft-tissue sarcomas, highlighting efforts to enhance methodology and bring radiomics from a research area to the clinical stage. KEY POINTS: • 2021-2023 radiomic studies on CT and MRI of musculoskeletal sarcomas were reviewed. • Feature reproducibility was assessed in more than half (59%) of the studies. • Model clinical validation was performed in 69% of the studies. • Internal (44%) and/or external (29%) test datasets were employed for clinical validation.

14.
Eur Radiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308012

RESUMO

OBJECTIVES: To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predicting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas. METHODS: PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodological quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) and to assess inter-study heterogeneity. RESULTS: We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8-44%). Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibration and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. The pooled AUC was 0.78 (95% CI, 0.73-0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57-0.73, p < 0.01). CONCLUSIONS: Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders its current implementation in clinical practice. CLINICAL RELEVANCE STATEMENT: MGMT promoter methylation status appears to be variably correlated with MRI radiomic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict MGMT promoter methylation status in patients with glioma before surgery. KEY POINTS: • Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score. • MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy results across studies. • Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy than others.

15.
J Imaging Inform Med ; 37(3): 1187-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332405

RESUMO

Segmentation and image intensity discretization impact on radiomics workflow. The aim of this study is to investigate the influence of interobserver segmentation variability and intensity discretization methods on the reproducibility of MRI-based radiomic features in lipoma and atypical lipomatous tumor (ALT). Thirty patients with lipoma or ALT were retrospectively included. Three readers independently performed manual contour-focused segmentation on T1-weighted and T2-weighted sequences, including the whole tumor volume. Additionally, a marginal erosion was applied to segmentations to evaluate its influence on feature reproducibility. After image pre-processing, with included intensity discretization employing both fixed bin number and width approaches, 1106 radiomic features were extracted from each sequence. Intraclass correlation coefficient (ICC) 95% confidence interval lower bound ≥ 0.75 defined feature stability. In contour-focused vs. margin shrinkage segmentation, the rates of stable features extracted from T1-weighted and T2-weighted images ranged from 92.68 to 95.21% vs. 90.69 to 95.66% after fixed bin number discretization and from 95.75 to 97.65% vs. 95.39 to 96.47% after fixed bin width discretization, respectively, with no difference between the two segmentation approaches (p ≥ 0.175). Higher stable feature rates and higher feature ICC values were found when implementing discretization with fixed bin width compared to fixed bin number, regardless of the segmentation approach (p < 0.001). In conclusion, MRI radiomic features of lipoma and ALT are reproducible regardless of the segmentation approach and intensity discretization method, although a certain degree of interobserver variability highlights the need for a preliminary reliability analysis in future studies.


Assuntos
Lipoma , Imageamento por Ressonância Magnética , Variações Dependentes do Observador , Humanos , Lipoma/diagnóstico por imagem , Lipoma/patologia , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Processamento de Imagem Assistida por Computador/métodos , Radiômica
16.
J Neurosurg Sci ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287775

RESUMO

BACKGROUND: Pituitary adenomas and craniopharyngiomas are the most common lesions of the sellar region. These tumors are responsible for invasion or compression of crucial neurovascular structures. The involvement of the pituitary stalk warrants high rates of both pre- and post- operative diabetes insipidus. The aim of our study was to assess the accuracy of machine learning analysis from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence. METHODS: All patients underwent MRI exams either on a 1.5- or 3-T MR scanner from two Institutions, including coronal T2-weighted (T2-w) and contrast-enhanced T1-weighted (CE T1-w) Turbo Spin Echo sequences. Feature selection was carried out as a multi-step process, with a threshold of 0.75 to identify robust features. Further feature selection steps included filtering based on feature variance (threshold >0.01) and pairwise correlation (threshold <0.80). A Bayesian Network model was trained with 10-fold cross validation employing SMOTE to balance classes exclusively within the training folds. RESULTS: Thirty patients were included in this study. In total 2394 features were extracted and 1791 (75%) resulted stable after ICC analysis. The number of variant features was 1351 and of non-colinear features was 125. Finally, 10 features were selected by oneR ranking. The Bayesian Network model showed an accuracy of 63% with a precision of 77% for DI prediction (0.68 area under the precision-recall curve). CONCLUSIONS: We assessed the accuracy of machine learning analysis of texture-derived parameters from preoperative MRI of pituitary adenomas and craniopharyngiomas for the prediction of DI occurrence.

17.
Cancers (Basel) ; 16(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38201630

RESUMO

In the last years, several studies demonstrated that low-aggressive (Grade Group (GG) ≤ 2) and high-aggressive (GG ≥ 3) prostate cancers (PCas) have different prognoses and mortality. Therefore, the aim of this study was to develop and externally validate a radiomic model to noninvasively classify low-aggressive and high-aggressive PCas based on biparametric magnetic resonance imaging (bpMRI). To this end, 283 patients were retrospectively enrolled from four centers. Features were extracted from apparent diffusion coefficient (ADC) maps and T2-weighted (T2w) sequences. A cross-validation (CV) strategy was adopted to assess the robustness of several classifiers using two out of the four centers. Then, the best classifier was externally validated using the other two centers. An explanation for the final radiomics signature was provided through Shapley additive explanation (SHAP) values and partial dependence plots (PDP). The best combination was a naïve Bayes classifier trained with ten features that reached promising results, i.e., an area under the receiver operating characteristic (ROC) curve (AUC) of 0.75 and 0.73 in the construction and external validation set, respectively. The findings of our work suggest that our radiomics model could help distinguish between low- and high-aggressive PCa. This noninvasive approach, if further validated and integrated into a clinical decision support system able to automatically detect PCa, could help clinicians managing men with suspicion of PCa.

18.
Eur Radiol ; 34(4): 2791-2804, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37733025

RESUMO

OBJECTIVES: To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS: Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS: The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS: Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT: There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS: • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.


Assuntos
Radiômica , Leitura , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes
19.
Diagn Interv Radiol ; 30(2): 80-90, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-37789676

RESUMO

With the advent of large language models (LLMs), the artificial intelligence revolution in medicine and radiology is now more tangible than ever. Every day, an increasingly large number of articles are published that utilize LLMs in radiology. To adopt and safely implement this new technology in the field, radiologists should be familiar with its key concepts, understand at least the technical basics, and be aware of the potential risks and ethical considerations that come with it. In this review article, the authors provide an overview of the LLMs that might be relevant to the radiology community and include a brief discussion of their short history, technical basics, ChatGPT, prompt engineering, potential applications in medicine and radiology, advantages, disadvantages and risks, ethical and regulatory considerations, and future directions.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Radiologistas , Idioma
20.
Eur Radiol ; 34(1): 436-443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37572188

RESUMO

OBJECTIVES: To investigate the model-, code-, and data-sharing practices in the current radiomics research landscape and to introduce a radiomics research database. METHODS: A total of 1254 articles published between January 1, 2021, and December 31, 2022, in leading radiology journals (European Radiology, European Journal of Radiology, Radiology, Radiology: Artificial Intelligence, Radiology: Cardiothoracic Imaging, Radiology: Imaging Cancer) were retrospectively screened, and 257 original research articles were included in this study. The categorical variables were compared using Fisher's exact tests or chi-square test and numerical variables using Student's t test with relation to the year of publication. RESULTS: Half of the articles (128 of 257) shared the model by either including the final model formula or reporting the coefficients of selected radiomics features. A total of 73 (28%) models were validated on an external independent dataset. Only 16 (6%) articles shared the data or used publicly available open datasets. Similarly, only 20 (7%) of the articles shared the code. A total of 7 (3%) articles both shared code and data. All collected data in this study is presented in a radiomics research database (RadBase) and could be accessed at https://github.com/EuSoMII/RadBase . CONCLUSION: According to the results of this study, the majority of published radiomics models were not technically reproducible since they shared neither model nor code and data. There is still room for improvement in carrying out reproducible and open research in the field of radiomics. CLINICAL RELEVANCE STATEMENT: To date, the reproducibility of radiomics research and open science practices within the radiomics research community are still very low. Ensuring reproducible radiomics research with model-, code-, and data-sharing practices will facilitate faster clinical translation. KEY POINTS: • There is a discrepancy between the number of published radiomics papers and the clinical implementation of these published radiomics models. • The main obstacle to clinical implementation is the lack of model-, code-, and data-sharing practices. • In order to translate radiomics research into clinical practice, the radiomics research community should adopt open science practices.


Assuntos
Inteligência Artificial , Radiômica , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA