Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biosens Bioelectron ; 196: 113696, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655970

RESUMO

Marine waters are becoming contaminated by diverse pollutants at a fast rate, and detection of these water pollutants has become a major concern in recent years. Among these, mercury is considered the most toxic element for human health. At present, despite the commonly used methods for its detection are accurate, they often require sophisticated equipments, have relatively high costs, are demanding and time-consuming. Herein a novel solution to detect mercury (II) pollution in sea water is proposed, and an easy and portable detection method has been developed. Indeed, a hydrophobin based chimera able to both adhere to polystyrene multiwell plates and bind mercury (II) with a consequent fluorescent decrease was designed. The chimera was the recognition element in a fluorescence-based biosensor able to detect mercury (II) in the nM range. Indeed, this biosensor specifically measure Hg2+ concentration also in the presence of other metals, reaching a limit of detection of 0.4 nM in tap water and 0.3 nM in sea water. Moreover, the developed biosensor was coupled to machine learning methodologies with the big advantage of predicting mercury concentration levels without the use of classical reader devices, thus allowing in situ monitoring of sea pollution by non-skilled personnel.


Assuntos
Técnicas Biossensoriais , Mercúrio , Poluentes Químicos da Água , Poluentes da Água , Humanos , Limite de Detecção , Aprendizado de Máquina , Mercúrio/análise , Poluentes Químicos da Água/análise
2.
Accid Anal Prev ; 160: 106322, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34365042

RESUMO

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.


Assuntos
Acidentes de Trânsito , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Medição de Risco
3.
Inf Syst Front ; 23(6): 1467-1497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935585

RESUMO

The first few months of 2020 have profoundly changed the way we live our lives and carry out our daily activities. Although the widespread use of futuristic robotaxis and self-driving commercial vehicles has not yet become a reality, the COVID-19 pandemic has dramatically accelerated the adoption of Artificial Intelligence (AI) in different fields. We have witnessed the equivalent of two years of digital transformation compressed into just a few months. Whether it is in tracing epidemiological peaks or in transacting contactless payments, the impact of these developments has been almost immediate, and a window has opened up on what is to come. Here we analyze and discuss how AI can support us in facing the ongoing pandemic. Despite the numerous and undeniable contributions of AI, clinical trials and human skills are still required. Even if different strategies have been developed in different states worldwide, the fight against the pandemic seems to have found everywhere a valuable ally in AI, a global and open-source tool capable of providing assistance in this health emergency. A careful AI application would enable us to operate within this complex scenario involving healthcare, society and research.

4.
Sci Rep ; 11(1): 5683, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707543

RESUMO

Potential Celiac Patients (PCD) bear the Celiac Disease (CD) genetic predisposition, a significant production of antihuman transglutaminase antibodies, but no morphological changes in the small bowel mucosa. A minority of patients (17%) showed clinical symptoms and need a gluten free diet at time of diagnosis, while the majority progress over several years (up to a decade) without any clinical problem neither a progression of the small intestine mucosal damage even when they continued to assume gluten in their diet. Recently we developed a traditional multivariate approach to predict the natural history, on the base of the information at enrolment (time 0) by a discriminant analysis model. Still, the traditional multivariate model requires stringent assumptions that may not be answered in the clinical setting. Starting from a follow-up dataset available for PCD, we propose the application of Machine Learning (ML) methodologies to extend the analysis on available clinical data and to detect most influent features predicting the outcome. These features, collected at time of diagnosis, should be capable to classify patients who will develop duodenal atrophy from those who will remain potential. Four ML methods were adopted to select features predictive of the outcome; the feature selection procedure was indeed capable to reduce the number of overall features from 85 to 19. ML methodologies (Random Forests, Extremely Randomized Trees, and Boosted Trees, Logistic Regression) were adopted, obtaining high values of accuracy: all report an accuracy above 75%. The specificity score was always more than 75% also, with two of the considered methods over 98%, while the best performance of sensitivity was 60%. The best model, optimized Boosted Trees, was able to classify PCD starting from the selected 19 features with an accuracy of 0.80, sensitivity of 0.58 and specificity of 0.84. Finally, with this work, we are able to categorize PCD patients that can more likely develop overt CD using ML. ML techniques appear to be an innovative approach to predict the outcome of PCD, since they provide a step forward in the direction of precision medicine aimed to customize healthcare, medical therapies, decisions, and practices tailoring the clinical management of PCD children.


Assuntos
Doença Celíaca/diagnóstico , Aprendizado de Máquina , Medicina de Precisão , Seguimentos , Humanos , Prognóstico
5.
Sci Rep ; 10(1): 14623, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884091

RESUMO

Nowadays, data-driven methodologies based on the clinical history of patients represent a promising research field in which personalized and intelligent healthcare systems can be opportunely designed and developed. In this perspective, Machine Learning (ML) algorithms can be efficiently adopted to deploy smart services to enhance the overall quality of healthcare systems. In this work, starting from an in-depth analysis of a data set composed of millions of medical booking records collected from the public healthcare organization in the region of Campania, Italy, we have developed a predictive model to extract useful knowledge on patients, medical staff, and related healthcare structures. In more detail, the main contribution is to suggest a Deep Learning (DL) methodology able to predict the access of a patient in one or more medical facilities of a fixed set in the immediate future, the subsequent 2 months. A structured Temporal Convolutional Neural Network (TCNN) is designed to extract temporal patterns from the administrative medical history of a patient. The experiment shows the goodness of the designed methodology. Finally, this work represents a novel application of a TCNN model to a multi-label classification problem not linked to text categorization or image recognition.


Assuntos
Algoritmos , Agendamento de Consultas , Aprendizado Profundo , Visita a Consultório Médico/estatística & dados numéricos , Humanos
6.
Future Gener Comput Syst ; 109: 293-305, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32296253

RESUMO

In data science, networks provide a useful abstraction of the structure of many complex systems, ranging from social systems and computer networks to biological networks and physical systems. Healthcare service systems are one of the main social systems that can also be understood using network-based approaches, for example, to identify and evaluate influential providers. In this paper, we propose a network-based method with privacy-preserving for identifying influential providers in large healthcare service systems. First, the provider-interacting network is constructed by employing publicly available information on locations and types of healthcare services of providers. Second, the ranking of nodes in the generated provider-interacting network is conducted in parallel on the basis of four nodal influence metrics. Third, the impact of the top-ranked influential nodes in the provider-interacting network is evaluated using three indicators. Compared with other research work based on patient-sharing networks, in this paper, the provider-interacting network of healthcare service providers can be roughly created according to the locations and the publicly available types of healthcare services, without the need for personally private electronic medical claims, thus protecting the privacy of patients. The proposed method is demonstrated by employing Physician and Other Supplier Data CY 2017, and can be applied to other similar datasets to help make decisions for the optimization of healthcare resources in the response to public health emergencies.

7.
Comput Math Methods Med ; 2014: 523862, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25045397

RESUMO

Nonlocal Means (NLM) algorithm is widely considered as a state-of-the-art denoising filter in many research fields. Its high computational complexity leads researchers to the development of parallel programming approaches and the use of massively parallel architectures such as the GPUs. In the recent years, the GPU devices had led to achieving reasonable running times by filtering, slice-by-slice, and 3D datasets with a 2D NLM algorithm. In our approach we design and implement a fully 3D NonLocal Means parallel approach, adopting different algorithm mapping strategies on GPU architecture and multi-GPU framework, in order to demonstrate its high applicability and scalability. The experimental results we obtained encourage the usability of our approach in a large spectrum of applicative scenarios such as magnetic resonance imaging (MRI) or video sequence denoising.


Assuntos
Encéfalo/patologia , Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Linguagens de Programação , Software
8.
Hippocampus ; 24(2): 165-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123649

RESUMO

The involvement of the hippocampus in learning processes and major brain diseases makes it an ideal candidate to investigate possible ways to devise effective therapies for memory-related pathologies like Alzheimer's Disease (AD). It has been previously reported that augmenting CREB activity increases the synaptic Long-Term Potentiation (LTP) magnitude in CA1 pyramidal neurons and their intrinsic excitability in healthy rodents. It has also been suggested that hippocampal CREB signaling is likely to be down-regulated during AD, possibly degrading memory functions. Therefore, the concept of CREB-based memory enhancers, i.e. drugs that would boost memory by activation of CREB, has emerged. Here, using a model of a CA1 microcircuit, we investigate whether hippocampal CA1 pyramidal neuron properties altered by increasing CREB activity may contribute to improve memory storage and recall. With a set of patterns presented to a network, we find that the pattern recall quality under AD-like conditions is significantly better when boosting CREB function with respect to control. The results are robust and consistent upon increasing the synaptic damage expected by AD progression, supporting the idea that the use of CREB-based therapies could provide a new approach to treat AD.


Assuntos
Região CA1 Hipocampal/citologia , Proteína de Ligação a CREB/metabolismo , Rememoração Mental/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Região CA1 Hipocampal/metabolismo , Simulação por Computador , Humanos , Plasticidade Neuronal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA