Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mov Sci ; 96: 103242, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850765

RESUMO

INTRODUCTION: Parkinson's disease (PD) causes gait abnormalities that may be associated with an arm swing reduction. Medication and freezing of gait (FoG) may influence gait characteristics. However, these comparisons do not consider differences in gait speed and clinical characteristics in individuals with PD. OBJECTIVE: This study aims to analyze the effect of FoG and medication on the biomechanics of the trunk and upper limbs during gait in PD, controlling for gait speed and clinical differences between groups. METHODS: Twenty-two people with a clinical diagnosis of idiopathic PD in ON and OFF medication (11 FoG), and 35 healthy participants (control) were selected from two open data sets. All participants walked on the floor on a 10-m-long walkway. The joint and linear kinematic variables of gait were compared: (1) Freezers and nonfreezers in the ON condition and control; (2) Freezers and nonfreezers in the OFF condition and control; (3) Group (freezers and nonfreezers) and medication. RESULTS: The disease affects the upper limbs more strongly but not the trunk. The medication does not significantly influence the joint characteristics but rather the linear wrist displacement. The FoG does not affect trunk movement and partially influences the upper limbs. The interaction between medications and FoG suggests that the medication causes more substantial improvement in freezers than in nonfreezers. CONCLUSION: The study shows differences in the biomechanics of the upper limbs of people with PD, FoG, and the absence of medication. The future rehabilitation protocol should consider this aspect.


Assuntos
Transtornos Neurológicos da Marcha , Marcha , Doença de Parkinson , Tronco , Extremidade Superior , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Fenômenos Biomecânicos , Masculino , Feminino , Idoso , Extremidade Superior/fisiopatologia , Pessoa de Meia-Idade , Tronco/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Marcha/fisiologia , Dopaminérgicos , Antiparkinsonianos/uso terapêutico
2.
Gait Posture ; 91: 149-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717288

RESUMO

BACKGROUND: The freezing episode (FE) management during gait in Parkinson's disease is inefficient with current medications, neurosurgery, and physical interventions. Knowing the biomechanical change patients suffer preceding FE would be the ultimate goal to measure, predict, and prevent these events. OBJECTIVE: We performed a systematic review to summarize the kinematic, kinetic, electromyographic, and spatio-temporal characteristics of the events that precede the FE during gait in Parkinson's disease. LITERATURE SURVEY: Databases searched included PubMed, Embase, and Cochrane and between 2001 to August 2021. METHODOLOGY: The present study was a systematic review registered in the PROSPERO database (CRD42021255082). Three reviewers searched and selected studies with methodologies involving biomechanical changes and kinetic, kinematic, electromyography, and spatiotemporal changes before FE in a patient with Parkinson's disease. The relevant articles that show the events preceding FE in patients with PD were identified. We excluded studies that describe or compare methods or algorithms to detect FE. Studies may include participants with all PD severity, time of disease, and age. SYNTHESIS: We selected ten articles for final evaluation. The most consistent results indicate a dramatic reduction of movement excursions with (1) decrease in stride length; (2) decreased gait speed; (3) postural instability with the increased double support phase; (4) incoordination of anterior tibial and gastrocnemius; (5) larger amplitude in the EMG of biceps femoris; (6) decreased range of motion in the sagittal plane at the ankle and hip joints; and (7) anterior pelvic tilt. CONCLUSION: FE is characterized by complex motor patterns than normal gait and mismatched gains in the perception and execution of the ongoing movement.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Fenômenos Biomecânicos , Marcha , Transtornos Neurológicos da Marcha/etiologia , Humanos , Doença de Parkinson/complicações , Velocidade de Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA