Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Br J Nutr ; : 1-27, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800991

RESUMO

Ganoderma lucidum (a mushroom used in traditional Chinese medicine) compounds may attenuate aging-related physiological changes and restore normal immunity. However, studies on the physiological effects of Ganoderma lucidum dry extract food supplements are few. Therefore, here, we aimed to investigate the effects of Ganoderma lucidum dry extract food supplement on the lymphocyte function of older women. This was a double-blind clinical trial (n = 60) with a final 39 older volunteers, divided into two groups, Ganoderma lucidum (n = 23) and placebo (n = 16). The Ganoderma lucidum group received 2,000 mg/day of Ganoderma lucidum dry extract for 8 weeks. We used flow cytometry to determine the lymphocyte profile. CD4+ lymphocyte gene expression was evaluated by real-time PCR. We observed that in the Ganoderma lucidum group, concanavalin A (ConA) stimulation increased lymphocyte proliferation. Further, we observed an increase in expression of FOXP3, TGF-ß, IL-10, IL-6, RORγ, GATA-3, and IFN-γ genes in the Ganoderma lucidum group. Furthermore, in the Ganoderma lucidum group, ionomycin and PMA stimulation led to decrease in Th17+ cells and increase in Th2+ cells. Thus, in older women, Ganoderma lucidum regulates T lymphocyte function leading to a predominant anti-inflammatory action but does not induce T lymphocyte proliferation through CD28 signaling pathway.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38735994

RESUMO

INTRODUCTION: Cardiac autonomic system functioning may be altered by obesity leading to cardiovascular diseases and associated complications. Military police officers are exposed to traditional and occupational risk factors for the development of CVD, however data on the cardiovascular health in this population is still scarce. AIM: In this cross-sectional study, we investigated the impact of obesity on cardiac autonomic modulation and the hemodynamic profile in male active-duty military police officers. METHODS: The body composition of the volunteers was assessed by octapolar electrical bioimpedance. Participants were classified as non-obese or obese in accordance with their body fat, with further subgroups as physically active obese or insufficiently active obese using International Physical Activity Questionnaire (IPAQ). Cardiac autonomic modulation was assessed by heart rate variability and the automatic oscillometric method allowed us to assess hemodynamic features. RESULTS: 102 military police officers from the state of São Paulo participated in the study. Cardiac autonomic modulation revealed significant impairment in time and frequency domains and non-linear methods in the obese group compared to the non-obese (p < 0.05). A higher physical activity level did not alter these results in the obese group. However, no significant differences in the hemodynamic profile were observed between groups (p > 0.05). CONCLUSION: These findings suggest a negative association between obesity and cardiac autonomic modulation in military police officers, unaffected by increased physical activity.

4.
Nutrients ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004105

RESUMO

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Assuntos
Glutamina , Condicionamento Físico Animal , Ratos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Nutricionais , Glutamatos/farmacologia , Condicionamento Físico Animal/fisiologia
5.
FEBS Open Bio ; 13(9): 1709-1722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470707

RESUMO

Autophagy plays a vital role in cell homeostasis by eliminating nonfunctional components and promoting cell survival. Here, we examined the levels of autophagy signaling proteins after 7 days of overload hypertrophy in the extensor digitorum longus (EDL) and soleus muscles of control and diabetic rats. We compared control and 3-day streptozotocin-induced diabetic rats, an experimental model for type 1 diabetes mellitus (T1DM). EDL muscles showed increased levels of basal autophagy signaling proteins. The diabetic state did not affect the extent of overload-induced hypertrophy or the levels of autophagy signaling proteins (p-ULK1, Beclin-1, Atg5, Atg12-5, Atg7, Atg3, LC3-I and II, and p62) in either muscle. The p-ULK-1, Beclin-1, and p62 protein expression levels were higher in the EDL muscle than in the soleus before the hypertrophic stimulus. On the contrary, the soleus muscle exhibited increased autophagic signaling after overload-induced hypertrophy, with increases in Beclin-1, Atg5, Atg12-5, Atg7, Atg3, and LC3-I expression in the control and diabetic groups, in addition to p-ULK-1 in the control groups. After hypertrophy, Beclin-1 and Atg5 levels increased in the EDL muscle of both groups, while p-ULK1 and LC3-I increased in the control group. In conclusion, the baseline EDL muscle exhibited higher autophagy than the soleus muscle. Although TDM1 promotes skeletal muscle mass loss and strength reduction, it did not significantly alter the extent of overload-induced hypertrophy and autophagy signaling proteins in EDL and soleus muscles, with the two groups exhibiting different patterns of autophagy activation.


Assuntos
Diabetes Mellitus Experimental , Ratos , Animais , Proteína Beclina-1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Autofagia
6.
Clin Sci (Lond) ; 137(10): 807-821, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37219940

RESUMO

Lymphocytes act as regulatory and effector cells in inflammation and infection situations. A metabolic switch towards glycolytic metabolism predominance occurs during T lymphocyte differentiation to inflammatory phenotypes (Th1 and Th17 cells). Maturation of T regulatory cells, however, may require activation of oxidative pathways. Metabolic transitions also occur in different maturation stages and activation of B lymphocytes. Under activation, B lymphocytes undergo cell growth and proliferation, associated with increased macromolecule synthesis. The B lymphocyte response to an antigen challenge requires an increased adenosine triphosphate (ATP) supply derived mainly through glycolytic metabolism. After stimulation, B lymphocytes increase glucose uptake, but they do not accumulate glycolytic intermediates, probably due to an increase in various metabolic pathway 'end product' formation. Activated B lymphocytes are associated with increased utilization of pyrimidines and purines for RNA synthesis and fatty acid oxidation. The generation of plasmablasts and plasma cells from B lymphocytes is crucial for antibody production. Antibody production and secretion require increased glucose consumption since 90% of consumed glucose is needed for antibody glycosylation. This review describes critical aspects of lymphocyte metabolism and functional interplay during activation. We discuss the primary fuels for the metabolism of lymphocytes and the particularities of T and B cell metabolism, including the differentiation of lymphocytes, stages of development of B cells, and the production of antibodies.


Assuntos
Linfócitos B , Metabolismo dos Lipídeos , Glicosilação , Transporte Biológico , Anticorpos , Glucose
7.
Gene ; 875: 147501, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37217153

RESUMO

Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Brasil , Hiperlipoproteinemia Tipo II/genética , Mutação , Éxons , Receptores de LDL/genética , Fenótipo
8.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049548

RESUMO

Herein, we investigated the effect of fish oil supplementation combined with a strength-training protocol, for 6 weeks, on muscle damage induced by a single bout of strength exercise in untrained young men. Sixteen men were divided into two groups, supplemented or not with fish oil, and they were evaluated at the pre-training period and post-training period. We investigated changes before and 0, 24, and 48 h after a single hypertrophic exercise session. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, plasma interleukin-6 (IL-6) and C-reactive protein (CRP) levels, and the redox imbalance were increased in response to the single-bout session of hypertrophic exercises at baseline (pre-training period) and decreased during the post-training period in the control group due to the repeated-bout effect (RBE). The fish oil supplementation exacerbated this reduction and improved the redox state. In summary, our findings demonstrate that, in untrained young men submitted to a strength-training protocol, fish oil supplementation is ideal for alleviating the muscle injury, inflammation, and redox imbalance induced by a single session of intense strength exercises, highlighting this supplementation as a beneficial strategy for young men that intend to engage in strength-training programs.


Assuntos
Doenças Musculares , Treinamento Resistido , Humanos , Óleos de Peixe/farmacologia , Treinamento Resistido/métodos , Suplementos Nutricionais , Oxirredução , Músculo Esquelético , Força Muscular
9.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112979

RESUMO

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Pandemias , SARS-CoV-2/genética , Virulência
11.
Proc Natl Acad Sci U S A ; 120(4): e2211933120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656866

RESUMO

Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT. In mice and CaCo2 cells, this increase in BIGU resulted from an increase in GLUT1 and GLUT2, secondary to ATF4 and AMPK. In hyperglycemia, metformin increased the lactate (reducing pH and bicarbonate in portal vein) and acetate production in the gut, modulating liver pyruvate carboxylase, MPC1/2, and FBP1, establishing a gut-liver crosstalk that reduces HGP. In normoglycemia, metformin-induced increases in BIGU is accompanied by hypoglycemia in the portal vein, generating a counter-regulatory mechanism that avoids reductions or even increases HGP. In summary, metformin increases BIGU and through gut-liver crosstalk influences HGP.


Assuntos
Trato Gastrointestinal , Glucose , Fígado , Metformina , Animais , Humanos , Camundongos , Células CACO-2 , Diabetes Mellitus Tipo 2 , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Fígado/metabolismo , Metformina/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Trato Gastrointestinal/metabolismo
12.
Toxicon ; 222: 106986, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442690

RESUMO

Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.


Assuntos
Crotoxina , Ratos , Masculino , Animais , Crotoxina/farmacologia , Ratos Wistar , Receptores de Formil Peptídeo/metabolismo , Células Endoteliais , Linfócitos , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia , Crotalus/metabolismo
13.
Front Microbiol ; 13: 1037467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439786

RESUMO

Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1ß, INF-α and INF-ß, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.

14.
Front Microbiol ; 13: 1037469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406408

RESUMO

Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.

15.
J Med Food ; 25(12): 1133-1145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36450115

RESUMO

We evaluated whether linseed oil (LO) modulates the effects of a high-carbohydrate diet (HCD) on liver inflammation, fatty acid (FA) accumulation, and lipid distribution in periportal and perivenous hepatocytes. The control group (control high-carbohydrate diet [HCD-C]) received an HCD with lard and soybean oil as the lipid source. The L10 and L100 groups received the HCD with 10% and 100% of LO as the lipid source, respectively. The animals were killed by decapitation before (day 0) and after receiving the diets. Liver FA composition, inflammation, and fibrogenesis gene expression were evaluated. Also, the percentage of lipid-occupied area in periportal end perivenous hepatocytes were measured. The L100 group exhibited a higher (P < .05) liver amount of omega-3 polyunsaturated FA (n-3 PUFA) and lower (P < .05) amounts of saturated FA (SFA), monounsaturated FA (MUFA), and omega-6 polyunsaturated FA (n-6 PUFA) compared with L10 or HCD-C mice. On day 56, interleukin 10 and type IV collagen gene expression were significantly upregulated and downregulated, respectively in L100. Also, the L100 group showed lower (P < .05) FA accumulation (i.e., total FA, SFA, MUFA, and n-6 PUFA). Also, L10 and L100 presented lower (P < .05) percentage of high lipid-containing portion in periportal and perivenous hepatocytes. We concluded that LO attenuation of liver inflammation promoted by an HCD is associated with increased liver n-3 PUFA levels, so modulating FA composition, deposition, and distribution in periportal and perivenous hepatocytes.


Assuntos
Ácidos Graxos Ômega-3 , Hepatite , Animais , Camundongos , Ácidos Graxos/metabolismo , Óleo de Semente do Linho/metabolismo , Ácidos Graxos Ômega-6 , Dieta , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Hepatócitos/metabolismo , Carboidratos
16.
Front Nutr ; 9: 947458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110404

RESUMO

Several studies have demonstrated that a maternal low-protein diet induces long-term metabolic disorders, but the involved mechanisms are unclear. This study investigated the molecular effects of a low-protein diet during pregnancy and lactation on glucose and protein metabolism in soleus muscle isolated from adult male rats. Female rats were fed either a normal protein diet or low-protein diet during gestation and lactation. After weaning, all pups were fed a normal protein diet until the 210th day postpartum. In the 7th month of life, mass, contractile function, protein and glucose metabolism, and the Akt-mTOR pathway were measured in the soleus muscles of male pups. Dry weight and contractile function of soleus muscle in the low-protein diet group rats were found to be lower compared to the control group. Lipid synthesis was evaluated by measuring palmitate incorporation in white adipose tissue. Palmitate incorporation was higher in the white adipose tissue of the low-protein diet group. When incubated soleus muscles were stimulated with insulin, protein synthesis, total amino acid incorporation and free amino acid content, glucose incorporation and uptake, and glycogen synthesis were found to be reduced in low-protein diet group rats. Fasting glycemia was higher in the low-protein diet group. These metabolic changes were associated with a decrease in Akt and GSK-3ß signaling responses to insulin and a reduction in RPS6 in the absence of the hormone. There was also notably lower expression of Akt in the isolated soleus muscle of low-protein diet group rats. This study is the first to demonstrate how maternal diet restriction can reduce skeletal muscle protein and mass by downregulating the Akt-mTOR pathway in adulthood.

17.
Toxicon ; 217: 46-55, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981665

RESUMO

Crotoxin (CTX), the major toxin of Crotalus durissus terrificus snake venom, induces an inhibitory effect on tumor development and modulates the functions of macrophages (MØs), which play a key role as a defense mechanism against tumor growth. In early tumor progression stage, MØs are avidly phagocytic (inflammatory cell), releasing reactive nitrogen intermediates-RNI/ROI and cytokines TNF-α, IL-1ß, and IL-6. However, when the tumor has been developed, tumor-associated MØ (angiogenic cell) presents a decrease in the mentioned activities. We reported that CTX stimulates H2O2 release, NO production and secretion of cytokines by peritoneal MØs obtained from non-tumor-bearing rats. Considering that the mentioned mediators control tumor growth, it is mandatory to investigate whether CTX stimulates the production of these mediators by MØs obtained from tumor-bearing animals. The aim of this work was then to evaluate the CTX effect on metabolism and functions of peritoneal MØs obtained from Walker 256 tumor-bearing rats. For this purpose, male Wistar rats were subcutaneously inoculated in the right flank with 1 mL sterile suspension of 2 × 107 Walker 256 tumor cells. CTX (18 µg per animal) was subcutaneously administered in two protocols: a) on the 1st day of tumor cell injection and b) on the 4th day of tumor cell inoculation. In both protocols, MØs were obtaining on the 14th day of tumor cell inoculation to evaluate the release of H2O2, NO, and pro-inflammatory cytokines (IL-1ß, TNFα, and IL-6); maximal activity of hexokinase, glucose-6-phosphate dehydrogenase, citrate synthase, and 14CO2 production from [U-14C]-glucose and [U-14C]-glutamine. The treatment with CTX stimulated the release of NO, H2O2, and cytokines, and glucose and glutamine metabolism. Metabolic and functional changes induced by CTX were accompanied by a decrease of tumor growth as indicated by tumor fresh weight and diameter. These results indicate CTX not only as a scientific tool to investigate changes in metabolism and functions of peritoneal MØs but also for a better understanding of the mechanisms involved in tumor growth.


Assuntos
Crotoxina , Animais , Crotalus/metabolismo , Crotoxina/farmacologia , Citocinas/metabolismo , Glucose , Glutamina , Peróxido de Hidrogênio/metabolismo , Interleucina-6 , Macrófagos Peritoneais/metabolismo , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa
18.
Crit Care Explor ; 4(8): e0734, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928539

RESUMO

This study sought to identify monocyte alterations from septic patients after hospital discharge by evaluating gene expression of inflammatory mediators and monocyte polarization markers. It was hypothesized that sepsis reprograms the inflammatory state of monocytes, causing effects that persist after hospital discharge and influencing patient outcomes. DESIGN: The gene expression patterns of inflammatory receptors, M1 and M2 macrophage polarization markers, NLRP3 inflammasome components, and pro- and anti-inflammatory cytokines in monocytes were assessed. PATIENTS: Thirty-four patients from the University of São Paulo Hospital, during the acute sepsis phase (phase A), immediately after ICU discharge (phase B), and 3 months (phase C), 6 months (phase D), 1 year (phase E), and 3 years (phase F) after discharge, were included. Patients that died during phases A and B were grouped separately, and the remaining patients were collectively termed the survivor group. MEASUREMENTS AND MAIN RESULTS: The gene expression of toll-like receptor (TLR)2 and TLR4 (inflammatory receptors), NLRP3, NFκB1, adaptor molecule apoptosis-associated speck-like protein containing a CARD, caspase 1, caspase 11, and caspase 12 (NLRP3 inflammasome components), interleukin-1α, interleukin-1ß, interleukin-18, and high-mobility group box 1 protein (proinflammatory cytokines), interleukin-10 (anti-inflammatory cytokine), C-X-C motif chemokine ligand 10, C-X-C motif chemokine ligand 11, and interleukin-12p35 (M1 inflammatory polarization markers), and C-C motif chemokine ligand 14, C-C motif chemokine ligand 22, transforming growth factor-beta (TGF-ß), SR-B1, and peroxisome proliferator-activated receptor γ (M2 anti-inflammatory polarization and tissue repair markers) was upregulated in monocytes from phase A until phase E compared with the control group. CONCLUSIONS: Sepsis reprograms the inflammatory state of monocytes, probably contributing to postsepsis syndrome development and mortality.

19.
Front Immunol ; 13: 871874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898497

RESUMO

The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2) has been around since November 2019. As of early June 2022, more than 527 million cases were diagnosed, with more than 6.0 million deaths due to this disease. Coronaviruses accumulate mutations and generate greater diversity through recombination when variants with different mutations infect the same host. Consequently, this virus is predisposed to constant and diverse mutations. The SARS-CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread across the world. These VOCs and VOIs have accumulated mutations within the spike protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main target for neutralizing antibodies; however, other notable mutations have been reported to enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab')2, called ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs, including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore, the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits COVID-19 patients by reducing the infectivity of the original virus and existing variants and may be effective against future ones. Impacting the course of the disease, mainly in the more vulnerable, reduces infection time and limits the appearance of new variants by new recombination.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Antivirais , Cavalos , Humanos , Proteínas do Nucleocapsídeo , Pandemias , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus
20.
Sci Adv ; 8(30): eabm7355, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905178

RESUMO

Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP , Interleucina-6 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ácidos Graxos/metabolismo , Humanos , Hipotálamo/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA