Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370633

RESUMO

The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti-to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium post-treatment confirmed chemokine secretion. Furthermore, IFNγ-treatment of organoids led to enhanced T cell migration in a CXCL11-dependent manner without affecting T cell activation status. Taken together, our results suggest a specific role for CXCL11 in T cell recruitment that can be targeted to prevent T cell trafficking to the inflamed intestine.

2.
bioRxiv ; 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37163028

RESUMO

The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior. Chemotherapy treatment using busulfan, fludarabine, and clofarabine led to damage responses in organoids resulting in increased T cell migration, activation, and proliferation in ex- vivo co-culture assays. We identified galectin-9 (Gal-9), a beta-galactoside-binding lectin released by damaged organoids, as a key molecule mediating T cell responses to damage. Increased levels of Gal-9 were also found in the plasma of allo-HCT patients who later developed acute GVHD, supporting the predictive value of the model system in the clinical setting. This study highlights the potential contribution of chemotherapy-induced epithelial damage to the pathogenesis of intestinal GVHD through direct effects on T cell activation and trafficking promoted by galectin-9.

3.
CRISPR J ; 5(3): 435-444, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35686979

RESUMO

Immunotherapies targeting checkpoint inhibition and cell therapies are considered breakthroughs for cancer therapy. However, only a part of patients benefit from these treatments and resistance has been observed. Combining both approaches can potentially further enhance their efficacy. With the advent of gene editing techniques, such as clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9), the elimination of checkpoint molecules became available as an option in good manufacturing practice conditions to improve persistence and efficacy. However, no data of CRISPR-Cas9 application have been reported in cord blood (CB)-derived immune cells, potentially usable for allogeneic cell therapy purposes. In this article, we describe the optimization of a protocol to deplete checkpoint molecules at the genomic level using CRISPR-Cas9 technology from CB-dendritic cells (DCs) and CB-CD8+ T cells. The protocol is based on the electroporation of a ribonucleoprotein complex, easily translatable to clinical settings. In both cell types, the knock-out (KO) was successful and did not affect cell viability. CB-DCs showed a decrease in expression of the targeted protein ranging from 50% to 95%, while CB-CD8+ T cells showed a reduction in the range of 25-45%. The procedure did not affect the stimulatory function of the CB-DCs or the response of CB-CD8+ T cells (proliferation or TNF-α production). In conclusion, we optimized a protocol to eliminate checkpoint molecules from CB-derived DCs and CD8+ T cells, with the aim to further implement allogeneic cell therapies for cancer.


Assuntos
Edição de Genes , Neoplasias , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas/genética , Células Dendríticas , Sangue Fetal , Edição de Genes/métodos , Humanos , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA