Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 21(11): 2703-2714, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36099490

RESUMO

The synthesis of new proteins and the degradation of old proteins in vivo can be quantified in serial samples using metabolic isotope labeling to measure turnover. Because serial biopsies in humans are impractical, we set out to develop a method to calculate the turnover rates of proteins from single human biopsies. This method involved a new metabolic labeling approach and adjustments to the calculations used in previous work to calculate protein turnover. We demonstrate that using a nonequilibrium isotope enrichment strategy avoids the time dependent bias caused by variable lag in label delivery to different tissues observed in traditional metabolic labeling methods. Turnover rates are consistent for the same subject in biopsies from different labeling periods, and turnover rates calculated in this study are consistent with previously reported values. We also demonstrate that by measuring protein turnover we can determine where proteins are synthesized. In human subjects a significant difference in turnover rates differentiated proteins synthesized in the salivary glands versus those imported from the serum. We also provide a data analysis tool, DeuteRater-H, to calculate protein turnover using this nonequilibrium metabolic 2H2O method.


Assuntos
Isótopos , Proteínas , Humanos , Marcação por Isótopo/métodos , Proteínas/metabolismo , Proteólise , Biópsia/métodos
2.
J Biomed Opt ; 26(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34390234

RESUMO

SIGNIFICANCE: Diffuse optical spectroscopic imaging (DOSI) is a versatile technology sensitive to changes in tissue composition and hemodynamics and has been used for a wide variety of clinical applications. Specific applications have prompted the development of versions of the DOSI technology to fit specific clinical needs. This work describes the development and characterization of a multi-modal DOSI (MM-DOSI) system that can acquire metabolic, compositional, and pulsatile information at multiple penetration depths in a single hardware platform. Additionally, a 3D tracking system is integrated with MM-DOSI, which enables registration of the acquired data to the physical imaging area. AIM: We demonstrate imaging, layered compositional analysis, and metabolism tracking capabilities using a single MM-DOSI system on optical phantoms as well as in vivo human tissue. APPROACH: We characterize system performance with a silicone phantom containing an embedded object. To demonstrate multi-layer sensitivity, we imaged human calf tissue with a 4.8-mm skin-adipose thickness. Human thenar tissue was also measured using a combined broadband DOSI and continuous-wave near-infrared spectroscopy method (∼15 Hz acquisition rate). RESULTS: High-resolution optical property maps of absorption (µa) and reduced scattering (µs ' ) were recovered on the phantom by capturing over 1000 measurement points in under 5 minutes. On human calf tissue, we show two probing depth layers have significantly different (p < 0.001) total-hemo/myoglobin and µs ' composition. On thenar tissue, we calculate tissue arterial oxygen saturation, venous oxygen saturation, and tissue metabolic rate of oxygen consumption during baseline and after release of an arterial occlusion. CONCLUSIONS: The MM-DOSI can switch between collection of broadband spectra, high-resolution images, or multi-depth hemodynamics without any hardware reconfiguration. We conclude that MM-DOSI enables acquisition of high resolution, multi-modal data consolidated in a single platform, which can provide a more comprehensive understanding of tissue hemodynamics and composition for a wide range of clinical applications.


Assuntos
Imagem Óptica , Espectroscopia de Luz Próxima ao Infravermelho , Hemodinâmica , Humanos , Imagens de Fantasmas
3.
Geroscience ; 43(2): 809-828, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32761290

RESUMO

Loss of protein homeostasis is a hallmark of the aging process. We and others have previously shown that maintenance of proteostasis is a shared characteristic of slowed-aging models. Rapamycin (Rap) exerts sex-specific effects on murine lifespan, but the combination of Rap with the anti-hyperglycemic drug metformin (Rap + Met) equally increases male and female mouse median lifespan. In the current investigation, we compare the effects of short-term (8 weeks) Rap and Rap + Met treatments on bulk and individual protein synthesis in two key metabolic organs (the liver and skeletal muscle) of young genetically heterogeneous mice using deuterium oxide. We report for the first time distinct effects of Rap and Rap + Met treatments on bulk and individual protein synthesis in young mice. Although there were decreases in protein synthesis as assessed by bulk measurements, individual protein synthesis analyses demonstrate there were nearly as many proteins that increased synthesis as decreased synthesis rates. While we observed the established sex- and tissue-specific effects of Rap on protein synthesis, adding Met yielded more uniform effects between tissue and sex. These data offer mechanistic insight as to how Rap + Met may extend lifespan in both sexes while Rap does not.


Assuntos
Metformina , Sirolimo , Animais , Feminino , Longevidade , Masculino , Metformina/farmacologia , Camundongos , Biossíntese de Proteínas , Caracteres Sexuais , Sirolimo/farmacologia
4.
IEEE Trans Biomed Eng ; 67(7): 1872-1881, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31670661

RESUMO

OBJECTIVE: Diffuse optical spectroscopic imaging (DOSI) is a promising biophotonic technology for clinical tissue assessment, but is currently hampered by difficult wide area assessment. A co-integrative optical imaging system is proposed for dense sub-surface optical property spatial assessment. METHODS: The proposed system fuses a co-aligned set of camera frames and diffuse optical spectroscopy measurements to generate spatial sub-surface optical property maps. A 3D rigid body motion estimation model was developed by fitting automatically detected target features to an a priori geometric model using a single overhead camera. Point-wise optical properties were measured across the tissue using frequency domain photon migration DOSI. The 3D probe trajectory and temporal optical property data were fused to generate 2D spatial optical property maps, which were projected onto the tissue image using pre-calibrated camera parameters. RESULTS: The system demonstrated sub-millimeter positional accuracy (error 0.24 ± 0.35 mm) across different probe speeds (1.0-3.8 cm/s), and displacement accuracy in overhead ([Formula: see text] mm) and tilted (0.51 ± 0.51 mm) camera orientations. Unstructured scans on a tumor inclusion phantom showed strong contrast under different probe paths, and significant ( ) changes in optical properties in an in vivo leg cuff occlusion protocol with spatial anatomy localization. CONCLUSION: The proposed co-integrative optical imaging system generated dense sub-surface optical property distributions across wide tissue areas with sub-millimeter accuracy at different probe speeds and trajectories, and does not require pre-planned probe route for tissue assessment. SIGNIFICANCE: This system provides a valuable tool for real-time non-invasive tissue health and cancer screening, and enables longitudinal disease progression assessment through unstructured probe-based optical tissue assessment.


Assuntos
Algoritmos , Diagnóstico por Imagem , Imageamento Tridimensional , Microcirurgia , Imagem Óptica , Imagens de Fantasmas , Análise Espectral
5.
J Biomed Opt ; 22(12): 1-9, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29264896

RESUMO

A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ∼6% in oxy-hemo/myoglobin (3.4±1.0 µM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 µM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ∼2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ∼60% increases in 1 rep-max strength (41.5±6.2 kg, p=1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.


Assuntos
Composição Corporal/fisiologia , Músculo Esquelético/diagnóstico por imagem , Imagem Óptica , Treinamento Resistido , Humanos , Análise Espectral
6.
Biomicrofluidics ; 8(5): 054117, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25584114

RESUMO

Metastatic cancer cells must traverse a microenvironment ranging from extremely hypoxic, within the tumor, to highly oxygenated, within the host's vasculature. Tumor hypoxia can be further characterized by regions of both chronic and intermittent hypoxia. We present the design and characterization of a microfluidic device that can simultaneously mimic the oxygenation conditions observed within the tumor and model the cell migration and intravasation processes. This device can generate spatial oxygen gradients of chronic hypoxia and produce dynamically changing hypoxic microenvironments in long-term culture of cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA