Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6754, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376280

RESUMO

Chronic hyperglycaemia causes a dramatic decrease in mitochondrial metabolism and insulin content in pancreatic ß-cells. This underlies the progressive decline in ß-cell function in diabetes. However, the molecular mechanisms by which hyperglycaemia produces these effects remain unresolved. Using isolated islets and INS-1 cells, we show here that one or more glycolytic metabolites downstream of phosphofructokinase and upstream of GAPDH mediates the effects of chronic hyperglycemia. This metabolite stimulates marked upregulation of mTORC1 and concomitant downregulation of AMPK. Increased mTORC1 activity causes inhibition of pyruvate dehydrogenase which reduces pyruvate entry into the tricarboxylic acid cycle and partially accounts for the hyperglycaemia-induced reduction in oxidative phosphorylation and insulin secretion. In addition, hyperglycaemia (or diabetes) dramatically inhibits GAPDH activity, thereby impairing glucose metabolism. Our data also reveal that restricting glucose metabolism during hyperglycaemia prevents these changes and thus may be of therapeutic benefit. In summary, we have identified a pathway by which chronic hyperglycaemia reduces ß-cell function.


Assuntos
Diabetes Mellitus , Hiperglicemia , Ilhotas Pancreáticas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Insulina/metabolismo , Hiperglicemia/metabolismo , Ácido Pirúvico/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus/metabolismo
2.
Front Pharmacol ; 13: 861311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571112

RESUMO

Type 2 diabetes mellitus (T2DM) remains one of the most pressing health issues facing modern society. Several antidiabetic drugs are currently in clinical use to treat hyperglycaemia, but there is a need for new treatments that effectively restore pancreatic islet function in patients. Recent studies reported that both murine and human pancreatic islets exhibit enhanced insulin release and ß-cell viability in response to N-methyl-D-aspartate (NMDA) receptor antagonists. Furthermore, oral administration of dextromethorphan, an over-the-counter NMDA receptor antagonist, to diabetic patients in a small clinical trial showed improved glucose tolerance and increased insulin release. However, the effects of NMDA receptor antagonists on the secretion of the incretin hormone GLP-1 was not tested, and nothing is known regarding how NMDA receptor antagonists may alter the secretion of gut hormones. This study demonstrates for the first time that, similar to ß-cells, the NMDA receptor antagonist MK-801 increases the release of GLP-1 from a murine L-cell enteroendocrine model cell line, GLUTag cells. Furthermore, we report the 3' mRNA expression profiling of GLUTag cells, with a specific focus on glutamate-activated receptors. We conclude that if NMDA receptor antagonists are to be pursued as an alternative, orally administered treatment for T2DM, it is essential that the effects of these drugs on the release of gut hormones, and specifically the incretin hormones, are fully investigated.

3.
Obesity (Silver Spring) ; 27(8): 1292-1304, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31338999

RESUMO

OBJECTIVE: A previous genome-wide association study linked overexpression of an ATP-binding cassette transporter, ABCC5, in humans with a susceptibility to developing type 2 diabetes with age. Specifically, ABCC5 gene overexpression was shown to be strongly associated with increased visceral fat mass and reduced peripheral insulin sensitivity. Currently, the role of ABCC5 in diabetes and obesity is unknown. This study reports the metabolic phenotyping of a global Abcc5 knockout mouse. METHODS: A global Abcc5-/- mouse was generated by CRISPR/Cas9. Fat mass was determined by weekly EchoMRI and fat pads were dissected and weighed at week 18. Glucose homeostasis was ascertained by an oral glucose tolerance test, intraperitoneal glucose tolerance test, and intraperitoneal insulin tolerance test. Energy expenditure and locomotor activity were measured using PhenoMaster cages. Glucagon-like peptide 1 (GLP-1) levels in plasma, primary gut cell cultures, and GLUTag cells were determined by enzyme-linked immunosorbent assay. RESULTS: Abcc5-/- mice had decreased fat mass and increased plasma levels of GLP-1, and they were more insulin sensitive and more active. Recombinant overexpression of ABCC5 protein in GLUTag cells decreased GLP-1 release. CONCLUSIONS: ABCC5 protein expression levels are inversely related to fat mass and appear to play a role in the regulation of GLP-1 secretion from enteroendocrine cells.


Assuntos
Tecido Adiposo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Resistência à Insulina/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Teste de Tolerância a Glucose , Homeostase/genética , Insulina/sangue , Masculino , Camundongos , Camundongos Knockout
4.
Obesity (Silver Spring) ; 26(2): 269-273, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105987

RESUMO

OBJECTIVE: The ketones d-ß-hydroxybutyrate (BHB) and acetoacetate are elevated during prolonged fasting or during a "ketogenic" diet. Although weight loss on a ketogenic diet may be associated with decreased appetite and altered gut hormone levels, it is unknown whether such changes are caused by elevated blood ketones. This study investigated the effects of an exogenous ketone ester (KE) on appetite. METHODS: Following an overnight fast, subjects with normal weight (n = 15) consumed 1.9 kcal/kg of KE, or isocaloric dextrose (DEXT), in drinks matched for volume, taste, tonicity, and color. Blood samples were analyzed for BHB, glucose, insulin, ghrelin, glucagon-like peptide 1 (GLP-1), and peptide tyrosine tyrosine (PYY), and a three-measure visual analogue scale was used to measure hunger, fullness, and desire to eat. RESULTS: KE consumption increased blood BHB levels from 0.2 to 3.3 mM after 60 minutes. DEXT consumption increased plasma glucose levels between 30 and 60 minutes. Postprandial plasma insulin, ghrelin, GLP-1, and PYY levels were significantly lower 2 to 4 hours after KE consumption, compared with DEXT consumption. Temporally related to the observed suppression of ghrelin, reported hunger and desire to eat were also significantly suppressed 1.5 hours after consumption of KE, compared with consumption of DEXT. CONCLUSIONS: Increased blood ketone levels may directly suppress appetite, as KE drinks lowered plasma ghrelin levels, perceived hunger, and desire to eat.


Assuntos
Apetite/fisiologia , Bebidas/análise , Ésteres/uso terapêutico , Grelina/sangue , Fome/fisiologia , Cetonas/uso terapêutico , Adulto , Estudos Cross-Over , Ésteres/administração & dosagem , Ésteres/farmacologia , Feminino , Humanos , Cetonas/administração & dosagem , Cetonas/farmacologia , Masculino , Método Simples-Cego , Adulto Jovem
5.
Ann Agric Environ Med ; 19(3): 491-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23020045

RESUMO

The interaction between environmental signals and genes has now taken on a clear molecular form as demonstrated by stable changes in chromatin structure. These changes occur through activation or repression of specific gene programmes by a combination of chromatin remodelling, activation and enzymatic modification of DNA and histones as well as nucleosomal subunit exchange. Recent research investigating the molecular mechanisms controlling drug-induced transcriptional, behavioural and synaptic activity has shown a direct role for chromatin remodelling--termed as epigenetic regulation--of neuronal gene programmes and subsequent addictive behaviour arising from it. Recent data suggest that repeated exposure to certain drugs promotes changes in levels of histone acetylation, phosphorylation and methylation, together with alterations in DNA methylation levels in the neurons of the brain reward centre, localised in the Nucleus Accumbens (NAc) region of the limbic system. The combination of acetylating, phosphorylating and methylating H3 and H4 histone tails alter chromatin compaction thereby promoting altered levels of cellular gene expression. Histone modifications, which weaken histone interaction with DNA or that promote recruitment of transcriptional activating complexes, correlate with permissive gene expression. Histone deacetylation, (which strengthen histone: DNA contacts), or histone methylation, (which recruits repressive complexes to chromatin), promote a state of transcriptional repression. Using animal models, acute cocaine treatment increases H4 acetylation at acutely regulated gene promoters, whereas H3 acetylation appears to predominate at chronically induced promoters. Chronic cocaine and alcohol treatment activate and repress many genes such as FosB, Cdk5, and Bdnf, where their dysregulation, at the chromatin level, contribute to the development and maintenance of addiction. Following drug exposure, it is still unknown, howver, how long these changes in chromatin structure persist in affecting neuronal function, but some do so for life.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Transtornos Relacionados ao Uso de Substâncias/genética , Animais , Cocaína/farmacologia , Cocaína/toxicidade , Etanol/farmacologia , Etanol/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Histonas/metabolismo , Humanos , Camundongos , Modelos Animais , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/etiologia
6.
Int J Med Mushrooms ; 13(6): 525-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22181840

RESUMO

This paper describes the study conducted to evaluate the antiproliferative activity of ether and ethanol extracts isolated from Piptoporus betulinus against cancer-derived cells. The fungal material used for extract preparation and further experiments was obtained from in vitro grown strains of P. betulinus. To the best of the authors’ knowledge, this is the first study evaluating antiproliferative potential of in vitro cultured birch polypore fungus. The effect of ether and ethanol extracts on cell proliferation, viability, and adhesion was assessed on colorectal adenocarcinoma cancer cell line LS180, whereas the cytotoxicity effect was investigated in normal colon epithelium-derived cell line CCD 841 CoTr. Studied extracts highly decreased the viability of cancer cells, slightly inhibiting proliferation and tumor cell adhesion in a time- and dose-dependent manner. Cytotoxicity of extracts against cells of normal colon epithelium origin was observed only at the highest studied concentration. The obtained results may seem interesting in comparison with previous studies on water extracts from natural grown P. betulinus. Future research on mycelial extract activity, as well as the content analysis, is needed.


Assuntos
Antineoplásicos/farmacologia , Basidiomycota/química , Etanol/química , Éter/química , Micélio/química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células , Relação Dose-Resposta a Droga , Humanos
7.
Ann Agric Environ Med ; 18(2): 294-303, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216802

RESUMO

Human biomonitoring provides an efficient and cost-effective way to identify and quantify exposure to chemical substances, including those having deleterious eff ects on human organisms. Once the risk of hazardous exposure has been identified and the mechanism of toxic eff ects has been elucidated, an ultimate decision about how to reduce exposure can be made. A particularly high risk of exposure to hazardous chemicals is associated with the use of pesticides in agriculture, especially the use of organophosphorous pesticides (OP), which are the most widely and commonly used insecticides worldwide. There is some strong evidence that chronic exposure to these compounds may have adverse eff ects on health. Exposure to pesticides has been associated with an increase in the incidence of non-Hodgkin's lymphoma, multiple myeloma, soft tissue sarcoma, lung sarcoma, and cancer of the pancreas, stomach, liver, bladder and gall bladder, Parkinson disease, Alzheimer disease, and reproductive outcomes. In view of these findings, the detection of populations at risk constitutes a very important topic. The biomonitoring studies on individuals exposed to pesticides have shown an elevated level of indicators of DNA damage, such as chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei (MN), and recently, single cell gel electrophoresis (SCGE). The cytogenetic markers of DNA damage have become very popular and useful in providing an analytical data for risk assessment, such as internal exposure doses and early biological eff ects of both occupational and environmental exposure to pesticides. The article describes the usefulness and the limitations of these biomarkers in biomonitoring studies of populations exposed to pesticides, with regard to the main routes of uptake and different matrices, which can be used to monitor risk assessment in occupational settings. The article also summarizes the latest reports about biomarkers of susceptibility, and mentions other biomarkers widely used in biomonitoring studies, such as pesticide or its metabolites level.


Assuntos
Biomarcadores/análise , Dano ao DNA , Exposição Ambiental , Monitoramento Ambiental/métodos , Compostos Organofosforados/toxicidade , Praguicidas/toxicidade , Medição de Risco/métodos , Agricultura , Doença de Alzheimer/induzido quimicamente , Humanos , Neoplasias/induzido quimicamente , Exposição Ocupacional , Compostos Organofosforados/análise , Doença de Parkinson/etiologia , Praguicidas/análise
8.
Ann Agric Environ Med ; 18(2): 304-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22216803

RESUMO

In recent years the attention of society, the media and politicians has focused on the negative phenomenon of the occurrence of an enormous amount of new psychoactive substances flooding the European market. In Poland and in Europe they are known under the name 'legal highs' or 'smart drugs'. In many countries these compounds present a serious social and health problem. The core of the problem is the fact that in the light of the law these substances are legal, while actually they imitate the eff ect of illegal narcotics. Smart drugs are sold allegedly as 'products not intended for human consumption', under the cover of 'collector's commodities', 'incense sticks' or 'bath salts'. Efforts undertaken by many countries, including Poland, are biased towards gaining control over this pathological phenomenon by placing the subsequent substances on the list of prohibited agents. However, the resilient chemical and pharmaceutical industry still remains one step ahead by introducing new derivatives of already banned products, practically identical in action. The presented article is an attempt to bring closer the problem of smart drugs in Poland, from the occurrence of this alarming phenomenon, through the spread of sales in shops all over Poland, to a series of changes in the Polish anti-narcotic law, drastic actions of closing the shops throughout the entire country, and transferring the sale of smart drugs to the internet.


Assuntos
Legislação de Medicamentos , Preparações Farmacêuticas/provisão & distribuição , Psicotrópicos/provisão & distribuição , Comércio , Drogas Desenhadas/classificação , Drogas Desenhadas/economia , Drogas Desenhadas/história , Drogas Desenhadas/provisão & distribuição , História do Século XX , História do Século XXI , Humanos , Internet , Preparações Farmacêuticas/classificação , Preparações Farmacêuticas/economia , Preparações Farmacêuticas/história , Polônia , Psicotrópicos/classificação , Psicotrópicos/economia , Psicotrópicos/história , Saúde Pública
9.
Artigo em Polonês | MEDLINE | ID: mdl-22248783

RESUMO

Currently used dietary recommendations and requirements are generalized. It applies to both healthy and ailing individuals. These recommendations are meant to avert leading chronic illnesses such as: type 2 diabetes mellitus, obesity, hyperlipidemia, cardiovascular diseases and hypertension. In the future it might be possible to give dietary advice tailored to every - sick and healthy - individual. Nutrigenomics and nutrigenetics are two fields derived from nutrition science and genetics. Their main goal is to elucidate the influence of interactions between genes and diet on individuals' health. This paper shows the examples of metabolic response changes according to diet and chosen gene polymorphisms. It will enable an effective prevention or management of chronic diseases by accurate diet and lifestyle matched to an individual's genetic makeup. It could be useful especially to define predisposition for type 2 diabetes mellitus in young children. It will be possible to change their diet and lifestyle so that they could avoid this chronic disease. There will also be a possibility to detect early the beginning of the illness and choose/select proper treatment. It is important because type 2 diabetes mellitus frequency is up to 90% of all cases of diabetes mellitus. It's often diagnosed too late and a lot of patients have already developed complications caused by this disease. Successful dietotherapy will also be available in such disease entities as dyslipidemias, hypertension and micro- , macronutrients and vitamins defficiences.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Nutrigenômica , Estado Nutricional/genética , Obesidade/prevenção & controle , Apolipoproteínas/genética , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Nível de Saúde , Humanos , Fenômenos Fisiológicos da Nutrição/genética , Obesidade/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA