Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biotechnol ; 65(10): 1598-1607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36707469

RESUMO

In recent years, CRISPR interference (CRISPRi) technology of gene silencing has emerged as a promising alternative to RNA interference (RNAi) surpassing the latter in terms of efficiency and accuracy. Here, we describe the construction of a set of transposon vectors suitable for constitutive or tetracycline (doxycycline)-inducible silencing of genes of interest via CRISPRi method and conferring three different antibiotic resistances, using vectors available via Addgene repository. We have analyzed the performance of the new vectors in the silencing of mouse Adam10 and human lncRNA, NORAD. The empty vector variants can be used to efficiently silence any genes of interest.


Assuntos
RNA Longo não Codificante , Animais , Camundongos , Humanos , RNA Longo não Codificante/genética , Vetores Genéticos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Interferência de RNA , Inativação Gênica
2.
Biol Open ; 11(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35107128

RESUMO

RNA interference is one of the common methods of studying protein functions. In recent years critical reports have emerged indicating that off-target effects may have a much greater impact on RNAi-based analysis than previously assumed. We studied the influence of Adam10 and Adam17 silencing on MC38CEA cell response to proinflammatory stimuli. Eight lentiviral vector-encoded shRNAs that reduced ADAM10 expression, including two that are specific towards ADAM17, caused inhibition of cytokine-induced Nos2 expression presumably via off-target effects. ADAM10 silencing was not responsible for this effect because: (i) CRISPR/Cas9 knockdown of ADAM10 did not affect Nos2 levels; (ii) ADAM10 inhibitor increased rather than decreased Nos2 expression; (iii) overexpression of ADAM10 in the cells with shRNA-silenced Adam10 did not reverse the effect induced by shRNA; (iv) shRNA targeting ADAM10 resulted in decrease of Nos2 expression even in ADAM10-deficient cells. The studied shRNAs influenced transcription of Nos2 rather than stability of Nos2 mRNA. They also affected stimulation of Ccl2 and Ccl7 expression. Additionally, we used vectors with doxycycline-inducible expression of chosen shRNAs and observed reduced activation of NF-κB and, to a lesser extent, AP-1 transcription factors. We discuss the requirements of strict controls and verification of results with complementary methods for reliable conclusions of shRNA-based experiments.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteínas de Membrana , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
Mol Ther Nucleic Acids ; 26: 711-731, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34703654

RESUMO

In parallel with the expansion of RNA interference (RNAi) techniques, accumulating evidence indicates that RNAi analyses might be seriously biased due to the off-target effects of gene-specific short hairpin RNAs (shRNAs). Our findings indicated that off-target effects of non-targeting shRNA comprise another source of misinterpreted shRNA-based data. We found that SHC016, which is one of two non-targeting shRNA controls for the MISSION (commercialized TRC) library, exerts deleterious effects that lead to elimination of the shRNA-coding cassette from the genomes of cultured murine and human cells. Here, we used a lentiviral vector with inducible SHC016 expression to confirm that this shRNA induces apoptosis in murine cells and senescence or mitotic catastrophe depending on the p53 status in human tumor cells. We identified the core spliceosomal protein, small nuclear ribonucleoprotein Sm D3 (SNRPD3), as a major SHC016 target in several cell lines and confirmed that CRISPRi knockdown of SNRPD3 mimics the effects of SHC016 expression in A549 and U251 cells. The overexpression of SNRPD3 rescued U251 cells from SHC016-induced mitotic catastrophe. Our findings disqualified non-targeting SHC016 shRNA and added a new premise to the discussion about the sources of uncertainty in RNAi results.

4.
Sci Rep ; 11(1): 10295, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986441

RESUMO

The binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.


Assuntos
Colagenases/farmacologia , Imunoglobulina G/imunologia , Macrófagos/efeitos dos fármacos , Peptídeo Hidrolases/farmacologia , Animais , Citometria de Fluxo , Glicosilação , Macrófagos/imunologia , Camundongos , Ligação Proteica
5.
Mol Neurobiol ; 57(4): 1799-1813, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31838721

RESUMO

Neuregulin 2 (NRG2) belongs to the EGF family of growth factors. Most of this family members require proteolytic cleavage to liberate their ectodomains capable of binding and activating their cognate ErbB receptors. To date, most of the studies investigating proteolytic processing of neuregulins focused on NRG1, which was shown to undergo ectodomain shedding by several ADAM proteases and BACE1 and the remaining fragment was further cleaved by γ-secretase. Recently, NRG2 attracted more attention due to its role in the neurogenesis and modulation of behaviors associated with psychiatric disorders. In this study, we used genetic engineering methods to identify proteases involved in proteolytic processing of murine NRG2. Using non-neuronal cell lines as well as cultures of primary hippocampal neurons, we demonstrated that the major proteases responsible for releasing NRG2 ectodomain are ADAM10 and BACE2. Co-expression of NRG2 and BACE2 in neurons of certain brain structures including medulla oblongata and cerebellar deep nuclei was confirmed via immunohistochemical staining. The cleavage of NRG2 by ADAM10 or BACE2 generates a C-terminal fragment that serves as a substrate for γ-secretase. We also showed that murine NRG2 is subject to post-translational modifications, substantial glycosylation of its extracellular part, and phosphorylation of the cytoplasmic tail.


Assuntos
Fatores de Crescimento Neural/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Glicosilação , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/química , Fases de Leitura Aberta/genética , Domínios Proteicos , Especificidade por Substrato
6.
Biol Open ; 8(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709842

RESUMO

ADAM17 is a cell membrane metalloproteinase responsible for the release of ectodomains of numerous proteins from the cell surface. Although ADAM17 is often overexpressed in tumours and at sites of inflammation, little is known about the regulation of its expression. Here we investigate the role of NF-κB and Elk-1 transcription factors and upstream signalling pathways, NF-κB and ERK1/2 in ADAM17 expression in mouse brain endothelial cells stimulated with pro-inflammatory factors (TNF, IL-1ß, LPS) or a phorbol ester (PMA), a well-known stimulator of ADAM17 activity. Notably, NF-κB inhibitor, IKK VII, interfered with the IL-1ß- and LPS-mediated stimulation of ADAM17 expression. Furthermore, Adam17 promoter contains an NF-κB binding site occupied by p65 subunit of NF-κB. The transient increase in Adam17 mRNA in response to PMA was strongly reduced by an inhibitor of ERK1/2 phosphorylation, U0126. Luciferase reporter assay with vectors encoding the ERK1/2 substrate, Elk-1, fused with constitutively activating or repressing domains, indicated Elk-1 involvement in Adam17 expression. The site-directed mutagenesis of potential Elk-1 binding sites pointed to four functional Elk-1 binding sites in Adam17 promoter. All in all, our results indicate that NF-κB and Elk-1 transcription factors via NF-κB and ERK1/2 signalling pathways contribute to the regulation of mouse Adam17 expression.

7.
Acta Biochim Pol ; 65(2): 277-286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694447

RESUMO

Inhibition of heme oxygenase-1 (HO-1, encoded by HMOX1), a cytoprotective, anti-apoptotic and anti-inflammatory enzyme, may serve as a valuable therapy in various pathophysiological processes, including tumorigenesis. We compared the effect of chemical inhibitors - metalloporphyrins, with genetic tools - shRNA and CRISPR/Cas9 systems, to knock-down (KD)/knock-out (KO) HO-1 expression/activity. 293T cells were incubated with metalloporphyrins, tin and zinc protoporphyrins (SnPPIX and ZnPPIX, respectively) or were either transduced with lentiviral vectors encoding different shRNA sequences against HO-1 or were modified by CRISPR/Cas9 system targeting HMOX1. Metalloporphyrins decreased HO activity but concomitantly strongly induced HO-1 mRNA and protein in 293T cells. On the other hand, only slight basal HO-1 inhibition in shRNA KD 293T cell lines was confirmed on mRNA and protein level with no significant effect on enzyme activity. Nevertheless, silencing effect was much stronger when CRISPR/Cas9-mediated knock-out was performed. Most of the clones harboring mutations within HMOX1 locus did not express HO-1 protein and failed to increase bilirubin concentration after hemin stimulation. Furthermore, CRISPR/Cas9-mediated HO-1 depletion decreased 293T viability, growth, clonogenic potential and increased sensitivity to H2O2 treatment. In summary, we have shown that not all technologies can be used for inhibition of HO activity in vitro with the same efficiency. In our hands, the most potent and comprehensible results can be obtained using genetic tools, especially CRISPR/Cas9 approach.


Assuntos
Sistemas CRISPR-Cas , Heme Oxigenase-1/antagonistas & inibidores , Sistemas CRISPR-Cas/genética , Inibidores Enzimáticos , Inativação Gênica , Técnicas Genéticas/normas , Células HEK293 , Humanos , Metaloporfirinas/farmacologia , Métodos , RNA Interferente Pequeno
8.
Sci Rep ; 7(1): 11682, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916792

RESUMO

SmartFlare probes have recently emerged as a promising tool for visualisation and quantification of specific RNAs in living cells. They are supposed to overcome the common drawbacks of current methods for RNA analysis: the need of cell fixation or lysis, or the requirements for genetic manipulations. In contrast to the traditional methods, SmartFlare probes are also presumed to provide information on RNA levels in single cells. Disappointingly, the results of our comprehensive study involving probes specific to five different transcripts, HMOX1, IL6, PTGS2, Nrg1, and ERBB4, deny the usefulness of SmartFlare probes for RNA analysis. We report a total lack of correlation between fluorescence intensities of SmartFlare probes and the levels of corresponding RNAs assessed by RT-qPCR. To ensure strong differences in the levels of analysed RNAs, their expression was modified via: (i) HMOX1-knockdown generated by CRISPR-Cas9 genome editing, (ii) hemin-mediated stimulation of HMOX1- and IL1ß-mediated stimulation of IL6- and PTGS2 transcription, (iii) lentiviral vector-mediated Nrg1 overexpression. Additionally, ERBB4-specific SmartFlare probe failed to distinguish between ERBB4-expressing and non-expressing cell lines. Finally, we demonstrated that fluorescence intensity of HMOX1-specific SmartFlare probe corresponds to the efficacy of its uptake and/or accumulation.


Assuntos
Corantes Fluorescentes , Perfilação da Expressão Gênica/métodos , Sondas Moleculares , RNA/análise , Análise de Célula Única/métodos , Linhagem Celular , Erros de Diagnóstico , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Postepy Hig Med Dosw (Online) ; 70(0): 901-16, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27594566

RESUMO

Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Engenharia Genética/métodos , Animais , Archaea/genética , Bactérias/genética , Humanos
10.
PLoS One ; 7(12): e50791, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251384

RESUMO

ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.


Assuntos
Proteínas ADAM/genética , Carcinoma/genética , Neoplasias do Colo/genética , Citocinas/metabolismo , Neovascularização Patológica/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Carcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Colo/metabolismo , Neoplasias do Colo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Fosforilação , RNA Interferente Pequeno , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA