Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Bioorg Chem ; 139: 106737, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482048

RESUMO

The new dual 5HT1A/5HT7 receptor ligands were designed based on the purine-2,6-dione scaffold with the fluorine atom. Twenty-one new derivatives were synthesized, and their structure-activity relationship was summarized. Compound 11 (7-(2-(3-fluorophenyl)-2-oxoethyl)-8-((4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) showed the highest affinity to 5HT1AR and 5HT7R, and was the most potent antagonist of 5-HT1AR (Kb = 0.26 ± 0.1 nM) which activity can be to reference compound NAN-190 (Kb = 0.26 ± 0.1 nM). The experimentally established physicochemical parameters of compound 11 showed that compound, as slightly ionized in the blood, could penetrate the blood-brain barrier. A molecular docking study showed that the fluorine substitution introduces additional stabilization effects on binding to 5HT1A/5HT7Rs. In animal assays of depression and anxiety, compound 11 revealed activity in terms of dosage compared to marketed psychotropics such as fluoxetine, citalopram, and sertraline.


Assuntos
Antidepressivos , Flúor , Animais , Ligantes , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Relação Estrutura-Atividade , Purinas/química
2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37259302

RESUMO

Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.

3.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409413

RESUMO

Antiseizure drugs (ASDs) are commonly used to treat a wide range of nonepileptic conditions, including pain. In this context, the analgesic effect of four pyrrolidine-2,5-dione derivatives (compounds 3, 4, 6, and 9), with previously confirmed anticonvulsant and preliminary antinociceptive activity, was assessed in established pain models. Consequently, antinociceptive activity was examined in a mouse model of tonic pain (the formalin test). In turn, antiallodynic and antihyperalgesic activity were examined in the oxaliplatin-induced model of peripheral neuropathy as well as in the streptozotocin-induced model of painful diabetic neuropathy in mice. In order to assess potential sedative properties (drug safety evaluation), the influence on locomotor activity was also investigated. As a result, three compounds, namely 3, 6, and 9, demonstrated a significant antinociceptive effect in the formalin-induced model of tonic pain. Furthermore, these substances also revealed antiallodynic properties in the model of oxaliplatin-induced peripheral neuropathy, while compound 3 attenuated tactile allodynia in the model of diabetic streptozotocin-induced peripheral neuropathy. Apart from favorable analgesic properties, the most active compound 3 did not induce any sedative effects at the active dose of 30 mg/kg after intraperitoneal (i.p.) injection.


Assuntos
Neuropatias Diabéticas , Neuralgia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Neuropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Camundongos , Neuralgia/tratamento farmacológico , Oxaliplatina/uso terapêutico , Pirrolidinas , Estreptozocina
4.
Materials (Basel) ; 14(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34361351

RESUMO

Cancer represents one of the most serious health problems and the second leading cause of death around the world. Heterocycles, due to their prevalence in nature as well as their structural and chemical diversity, play an immensely important role in anti-cancer drug discovery. In this paper, a series of hydantoin and purine derivatives containing a 4-acetylphenylpiperazinylalkyl moiety were designed, synthesized, and biologically evaluated for their anticancer activity on selected cancer cell lines (PC3, SW480, SW620). Compound 4, a derivative of 3',4'-dihydro-2'H-spiro[imidazolidine-4,1'-naphthalene]-2,5-dione, was the most effective against SW480, SW620, and PC3 cancer cell lines. Moreover, 4 has high tumor-targeting selectivity. Based on docking studies, it was concluded that R isomers of 3',4'-dihydro-2'H-spiro[imidazolidine-4,1'-naphthalene]-2,5-dione could be further studied as promising scaffolds for the development of thymidine phosphorylase inhibitors.

5.
Materials (Basel) ; 14(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34442909

RESUMO

Many studies are being performed to develop effective carriers for controlled cytostatic delivery wherein albumin is a promising material due to its tendency to accumulate near cancer cells. The novelty of this work involves the development of the synthesis methodology of albumin nanoparticles and their biological and physicochemical evaluation. Albumin particles were obtained via the salt-induced precipitation and K3PO4 was used as a salting-out agent. Various concentrations of protein and salting-out agent solutions were mixed using a burette or a syringe system. It was proved that the size of the particles depended on the concentrations of the reagents and the methodology applied. As a result of a process performed using a burette and 2 M K3PO4, albumin spheres having a size 5-25 nm were obtained. The size of nanospheres and their spherical shape was confirmed via TEM analysis. The use of a syringe system led to preparation of particles of large polydispersity. The highest albumin concentration allowing for synthesis of homogeneous particles was 2 g/L. The presence of albumin in spheres was confirmed via the FT-IR technique and UV-Vis spectroscopy. All samples showed no cytotoxicity towards normal human dermal fibroblasts and no hemolytic properties against human erythrocytes (the hemolysis did not exceed 2.5%).

6.
Materials (Basel) ; 14(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207214

RESUMO

The novelty of the research involves designing the measurement methodology aimed at determining the structure-property relationships in the chitosan-based hydrogels containing yellow tea extract. Performed investigations allowed us to determine the swelling properties of hydrogels in selected time intervals, evaluate the mutual interactions between the hydrogels and simulated physiological liquids via pH measurements and directly assess the impact of such interactions on the chemical structure of hydrogels using Fourier transform infrared (FT-IR) spectroscopy and their wettability by the measurements of the flatness of the drop on the surface of the tested samples via the static drop method. Next, the surface morphology of hydrogels was characterized by the Scanning Electron Miscorcopy (SEM) and their elasticity under the tension applied was also verified. It was proved that incubation in simulated physiological liquids resulted in a decrease in contact angles of hydrogels, even by 60%. This also caused their certain degradation which was reflected in lower intensities of bands on FT-IR spectra. Further, 23% v/v yellow tea extract in hydrogel matrices caused the decrease of their tensile strength. An increase in the amount of the crosslinker resulted in a decrease in the sorption capacity of hydrogels wherein their modification caused greater swelling ability. In general, the investigations performed provided much information on the tested materials which may be meaningful considering their application, e.g., as dressing materials.

7.
Pharmacol Rep ; 73(5): 1361-1372, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34115343

RESUMO

BACKGROUND: Antiplatelet drugs have been used in the treatment of acute coronary syndromes and for the prevention of recurrent events. Unfortunately, many patients remain resistant to the available antiplatelet treatment. Therefore, there is a clinical need to synthesize novel antiplatelet agents, which would be associated with different pathways of platelet aggregation, to develop an alternative or additional treatment for resistant patients. Recent studies have revealed that 5-HT2A receptor antagonists could constitute alternative antiplatelet therapy. METHODS: Based on the structures of the conventional 5-HT2A receptor ligands, two series of compounds with 4-phenylcyclohexane-5-spiro- or 5-methyl-5-phenyl-hydantoin core linked to various arylpiperazine moieties were synthesized and their affinity for 5-HT2A receptor was assessed. Further, we evaluated their antagonistic potency at 5-HT2A receptors using isolated rat aorta and cells expressing human 5-HT2A receptors. Finally, we studied their anti-aggregation effect and compared it with ketanserin and sarpogrelate, the reference 5-HT2A receptor antagonists. Moreover, the structure-activity relationships were studied following molecular docking to the 5-HT2A receptor model. RESULTS: Functional bioassays revealed some of the synthesized compounds to be moderate antagonists of 5-HT2A receptors. Among them, 13, 8-phenyl-3-(3-(4-phenylpiperazin-1-yl)propyl)-1,3-diazaspiro[4.5]decane-2,4-dione, inhibited collagen stimulated aggregation (IC50 = 27.3 µM) being more active than sarpogrelate (IC50 = 66.8 µM) and comparable with ketanserin (IC50 = 32.1 µM). Moreover, compounds 2-5, 9-11, 13, 14 inhibited 5-HT amplified, ADP- or collagen-induced aggregation. CONCLUSIONS: Our study confirmed that the 5-HT2A antagonists effectively suppress platelet aggregation and remain an interesting option for the development of novel antiplatelet agents with an alternative mechanism of action.


Assuntos
Hidantoínas/síntese química , Hidantoínas/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Aorta , Células CHO , Cricetinae , Cricetulus , Humanos , Mianserina/farmacologia , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Ratos
8.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809109

RESUMO

The new series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives as potential anticonvulsant and analgesic agents was synthesized. The compounds obtained were evaluated in the following acute models of epilepsy: maximal electroshock (MES), psychomotor (6 Hz, 32 mA), and subcutaneous pentylenetetrazole (scPTZ) seizure tests. The most active substance-3-(2-chlorophenyl)-1-{2-[4-(4-fluorophenyl)piperazin-1-yl]-2-oxoethyl}-pyrrolidine-2,5-dione (6) showed more beneficial ED50 and protective index values than the reference drug-valproic acid (68.30 mg/kg vs. 252.74 mg/kg in the MES test and 28.20 mg/kg vs. 130.64 mg/kg in the 6 Hz (32 mA) test, respectively). Since anticonvulsant drugs are often effective in neuropathic pain management, the antinociceptive activity for two the promising compounds-namely, 6 and 19-was also investigated in the formalin model of tonic pain. Additionally, for the aforementioned compounds, the affinity for the voltage-gated sodium and calcium channels, as well as GABAA and TRPV1 receptors, was determined. As a result, the most probable molecular mechanism of action for the most active compound 6 relies on interaction with neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Compounds 6 and 19 were also tested for their neurotoxic and hepatotoxic properties and showed no significant cytotoxic effect.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Analgésicos/química , Animais , Anticonvulsivantes/química , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Estrutura Molecular , Neuralgia/tratamento farmacológico , Pirrolidinas/química , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade
9.
ChemMedChem ; 16(10): 1619-1630, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33539029

RESUMO

The aim of this study was to design and synthesize two new series of pyrrolidine-2,5-dione-acetamides with a benzhydryl or sec-butyl group at position 3 as potential anticonvulsants. Their anticonvulsant activity was evaluated in standard animal models of epilepsy: the maximal electroshock (MES), the 6 Hz, and the subcutaneous pentylenetetrazole (scPTZ) tests. The in vivo studies revealed the most potent anticonvulsant activity for 15 (3-(sec-butyl)-1-(2-(4-(3-trifluoromethylphenyl)piperazin-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione), with ED50 values of 80.38 mg/kg (MES) and 108.80 mg/kg (6 Hz). The plausible mechanism of action was assessed in in vitro binding assays, in which 15 interacted effectively with voltage-gated sodium (site 2) and L-type calcium channels at a concentration of 100 µM. Subsequently, the antinociceptive activity of compounds 7 and 15 was observed in the hot plate test of acute pain. Moreover, compounds 7, 11 and 15 demonstrated an analgesic effect in the formalin test of tonic pain. The hepatotoxic properties of the most effective compounds (7, 11 and 15) in HepG2 cells were also investigated.


Assuntos
Ácido Acético/farmacologia , Amidas/farmacologia , Analgésicos/farmacologia , Antineoplásicos/farmacologia , Dor/tratamento farmacológico , Convulsões/tratamento farmacológico , Ácido Acético/síntese química , Ácido Acético/química , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Formaldeído , Células Hep G2 , Humanos , Estrutura Molecular , Dor/induzido quimicamente , Convulsões/induzido quimicamente , Relação Estrutura-Atividade
10.
Bioorg Chem ; 109: 104735, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640632

RESUMO

A series of 17 arylpiperazine derivatives of the 5-spiroimidazolidine-2,4-diones (6-22) has been explored, including variations in (i) the number of aromatic rings at position 5, (ii) the length of the linker, as well as (iii) the kind and position of the linked arylpiperazine terminal fragment. Synthesis (6-16) and X-ray crystallographic studies for representative compounds (8, 10, 14 and 18) have been performed. The ability to inhibit the tumor multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells was investigated. The cytotoxic and antiproliferative actions of the compounds on both the reference and the ABCB1-overproducing cells were also examined. The pharmacophore-based molecular modeling studies have been performed. ADMET properties in vitro of selected most active derivatives (6, 11 and 12) have been determined. All compounds, excluding 18, inhibited the cancer P-gp efflux pump with higher potency than that of reference verapamil. The spirofluorene derivatives with amine alkyl substituents at position 1, and the methyl group at position 3 (6-16), occurred the most potent P-gp inhibitors in the MDR T-lymphoma cell line. In particular, compounds 7 and 12 were 100-fold more potent than verapamil. Crystallography-supported pharmacophore-based SAR analysis has postulated specific structural properties that could explain this excellent cancer MDR-inhibitory action.


Assuntos
Antineoplásicos/farmacologia , Imidazolidinas/farmacologia , Linfoma de Células T/tratamento farmacológico , Compostos de Espiro/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazolidinas/síntese química , Imidazolidinas/química , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
11.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854402

RESUMO

In this study, a series of compounds derived from 4-methoxy-1H-isoindole-1,3(2H)-dione, potential ligands of phosphodiesterase 10A and serotonin receptors, were investigated as potential antipsychotics. A library of 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives with various amine moieties was synthesized and examined for their phosphodiesterase 10A (PDE10A)-inhibiting properties and their 5-HT1A and 5-HT7 receptor affinities. Based on in vitro studies, the most potent compound, 18 (2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione), was selected and its safety in vitro was evaluated. In order to explain the binding mode of compound 18 in the active site of the PDE10A enzyme and describe the molecular interactions responsible for its inhibition, computer-aided docking studies were performed. The potential antipsychotic properties of compound 18 in a behavioral model of schizophrenia were also investigated.


Assuntos
Antipsicóticos , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/química , Receptor 5-HT1A de Serotonina/química , Receptores de Serotonina/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796594

RESUMO

The present study aimed to design and synthesize a new series of hybrid compounds with pyrrolidine-2,5-dione and thiophene rings in the structure as potential anticonvulsant and antinociceptive agents. For this purpose, we obtained a series of new compounds and evaluated their anticonvulsant activity in animal models of epilepsy (maximal electroshock (MES), psychomotor (6 Hz), and subcutaneous pentylenetetrazole (scPTZ) seizure tests). To determine the mechanism of action of the most active anticonvulsant compounds (3, 4, 6, 9), their influence on the voltage-gated sodium and calcium channels as well as GABA transporter (GAT) was assessed. The most promising compound 3-(3-methylthiophen-2-yl)-1-(3-morpholinopropyl)pyrrolidine-2,5-dione hydrochloride (4) showed higher ED50 value than those of the reference drugs: valproic acid (VPA) and ethosuximide (ETX) (62.14 mg/kg vs. 252.7 mg/kg (VPA) in the MES test, and 75.59 mg/kg vs. 130.6 mg/kg (VPA) and 221.7 mg/kg (ETX) in the 6 Hz test, respectively). Moreover, in vitro studies of compound 4 showed moderate but balanced inhibition of the neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Additionally, the antinociceptive activity of the most active compounds (3, 4, 6, 9) was also evaluated in the hot plate test and writhing tests, and their hepatotoxic properties in HepG2 cells were also investigated. To determine the possible mechanism of the analgesic effect of compounds 3, 6, and 9, the affinity for the TRPV1 receptor was investigated.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Analgésicos/química , Animais , Anticonvulsivantes/química , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Pirrolidinas/química
13.
Biomolecules ; 11(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383906

RESUMO

Malaria is an enormous threat to public health, due to the emergence of Plasmodium falciparum resistance to widely-used antimalarials, such as chloroquine (CQ). Current antimalarial drugs are aromatic heterocyclic derivatives, most often containing a basic component with an added alkyl chain in their chemical structure. While these drugs are effective, they have many side effects. This paper presents the synthesis and preliminary physicochemical characterisation of novel bioinspired imidazolidinedione derivatives, where the imidazolidinedione core was linked via the alkylene chain and the basic piperazine component to the bicyclic system. These compounds were tested against the asexual stages of two strains of P. falciparum-the chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains. In parallel, in vitro cytotoxicity was investigated on a human keratinocyte cell line, as well as their hemolytic activity. The results demonstrated that the antiplasmodial effects were stronger against the W2 strain (IC50 between 2424.15-5648.07 ng/mL (4.98-11.95 µM)), compared to the D10 strain (6202.00-9659.70 ng/mL (12.75-19.85 µM)). These molecules were also non-hemolytic to human erythrocytes at a concentration active towards the parasite, but with low toxicity to mammalian cell line. The synthetized derivatives, possessing enhanced antimalarial activity against the CQ-resistant strain of P. falciparum, appear to be interesting antimalarial drug candidates.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Imidazolidinas/química , Imidazolidinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Linhagem Celular , Técnicas de Química Sintética , Cloroquina/farmacologia , Descoberta de Drogas , Resistência a Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Imidazolidinas/síntese química , Malária Falciparum/tratamento farmacológico
14.
Bioorg Med Chem ; 27(18): 4163-4173, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383628

RESUMO

On the basis of the structures of serotonin modulators or drugs (NAN-190, buspirone, aripiprazole) and phosphodiesterase 4 (PDE4) inhibitors (rolipram, RO-20-1724), a series of novel multitarget 5-arylidenehydantoin derivatives with arylpiperazine fragment was synthesized. Among these compounds, 5-(3,4-dimethoxybenzylidene-3-(4-(4-(2,3-dichlorophenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (13) and 5-(3-cyclopentyloxy-4-methoxybenzylidene-3-(4-(4-(2-methoxyphenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (18) were found to be the most promising showing very high affinity toward 5-HT1A and 5-HT7 receptors (Ki = 0.2-1.0 nM) but a negligible inhibitory effect on PDE4. The high affinity of the compounds for 5-HT1A and 5-HT7 receptors was further investigated by computer-aided studies. Moreover, compounds 13 and 18 showed no significant cytotoxicity in the MTT assay, but high clearance in the in vitro assay. In addition, these compounds behaved like 5-HT1A and 5-HT7 receptor antagonists and exhibited antidepressant-like activity, similar to the reference drug citalopram, in an animal model of depression.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Receptores de Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Modelos Animais de Doenças , Humanos , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 29(16): 2387-2392, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208765

RESUMO

The aim of this study was to design and synthesize two series of N-Mannich bases with imidazolidine-2,4-dione core as a potential anticonvulsant with reduced toxicity and broad antiseizure activity. Preliminary screening revealed that the majority of synthesized compounds were effective in the maximal electroshock seizure (MES) and/or subcutaneous pentylenetetrazole (scPTZ) test. The most active in vivo compound, 18 (3-((4-methylpiperazin-1-yl)methyl)-5,5-diphenylimidazolidine-2,4-dione), exhibited an ED50 value comparable to that of phenytoin in the MES test (38.5 mg/kg vs 28.1 mg/kg), and more importantly, it showed four times higher potency than phenytoin in the 6 Hz test (12.2 mg/kg vs > 60 mg/kg). Additionally, 18 exhibited antiallodynic properties in the von Frey test in neuropathic (oxaliplatin-treated) mice. Compound 18 also demonstrated a broader spectrum of anticonvulsant activity than phenytoin and showed statistically significant antinociceptive properties in selected models of chronic pain.


Assuntos
Anticonvulsivantes/uso terapêutico , Imidazolidinas/uso terapêutico , Bases de Mannich/uso terapêutico , Dor/tratamento farmacológico , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imidazolidinas/administração & dosagem , Imidazolidinas/síntese química , Bases de Mannich/administração & dosagem , Bases de Mannich/síntese química , Camundongos , Estrutura Molecular , Oxaliplatina , Dor/induzido quimicamente , Ratos , Convulsões/induzido quimicamente , Relação Estrutura-Atividade
16.
Chem Biol Drug Des ; 93(4): 511-521, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30422400

RESUMO

A series of 2-pyrimidinyl-piperazinyl-alkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione has been synthesized in an attempt to discover a new class of psychotropic agents. Compounds were evaluated for their in vitro affinity for serotonin 5-HT1A , 5-HT7 , and phosphodiesterases PDE4 and PDE10. The most potent compound 2-pyrimidinyl-1-piperazinyl-butyl-imidazo[2,1-f]purine-2,4-dione (4b) behaved as strong and selective antagonist of 5-HT1A . Molecular modeling studies revealed differences in binding mode between compound 4b and buspirone, which might reflect variation of the ligands' affinity and potency in the 5-HT1A receptor. Compound 4b in silico models demonstrated drug-likeness properties and, contrary to buspirone, showed a metabolic stability in mouse liver microsomes system. Experimentally obtained value of apparent permeability coefficient Papp for 4b in parallel artificial permeability assay indicates the possibility of binding weakly to plasma proteins and high intestinal absorption fraction. Evaluation of the antidepressant- and anxiolytic-like activities of 4b revealed both activities at the same dose of 1.25 mg/kg and seemed to be specific. The antidepressant and/or anxiolytic properties of 4b may be related to its first-pass effect.


Assuntos
Ansiolíticos/química , Antidepressivos/química , Purinas/química , Receptor 5-HT1A de Serotonina/química , Animais , Ansiolíticos/metabolismo , Ansiolíticos/farmacologia , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Sítios de Ligação , Imidazóis/química , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Permeabilidade/efeitos dos fármacos , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Piperazina/química , Ligação Proteica , Estrutura Terciária de Proteína , Purinas/metabolismo , Purinas/farmacologia , Pirimidinas/química , Receptor 5-HT1A de Serotonina/metabolismo , Relação Estrutura-Atividade
17.
Electrophoresis ; 39(19): 2446-2453, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051931

RESUMO

Discovering hit compounds and optimization processes in medicinal chemistry nowadays could be improved by predictive tools, based on the relationship between structure of molecules and lipophilic properties. Lipophilicity of drug candidate can affect both the pharmacokinetic and pharmacodynamics properties, in particular, the ability of a molecule to cross the cell membrane. Among the new methods for determination of the lipophilicity of compounds, micellar electrokinetic chromatography (MEKC) is considered to be an appropriate one for bioactive molecules, as it closely mimics the physiological conditions. In this paper MEKC was used for the estimation of the lipophilicity of 24 derivatives of 8-alkoxy-7H-purine-2,6-dione, designed and synthesized as potential antidepressant/anxiolytic and antipsychotic agents. The results of experimental method were compared with calculated in silico parameters (AlogPs and milogP by Virtual Computational Laboratory website, log PPallas by Pallas 3.1, Mlog P by Marvin, log PChemS by ChemSketch, log PChemDraw by ChemBioUltra) using Principal Component Analysis (PCA) method. Finally, using estimated log P values for selected compounds ligand - lipophilicity efficiency (LLE), per cent efficiency index (PEI), and binding efficiency index (BEI) parameters were calculated. Applied MEKC procedure could be used for selection of potential lead structure in a group of 7H-purine-2,6-dione derivatives.


Assuntos
Cromatografia Capilar Eletrocinética Micelar/métodos , Psicotrópicos/química , Xantinas/química , Descoberta de Drogas , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Lineares , Psicotrópicos/análise , Psicotrópicos/farmacocinética , Xantinas/análise , Xantinas/farmacocinética
18.
Curr Med Chem ; 25(29): 3455-3481, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29521210

RESUMO

BACKGROUND: The phosphodiesterase 10 (PDE10) family, identified in 1999, is mainly expressed in the brain, particularly in the striatum, within the medium spiny neurons, nucleus accumbens, and olfactory tubercle. Inhibitors of PDE10 (PDE10-Is) are a conceptually rational subject for medicinal chemistry with potential use in the treatment of psychiatric and neurodegenerative diseases. OBJECTIVE: This review is based on peer-reviewed published articles, and summarizes the cellular and molecular biology of PDE10 as a rational target for psychiatric and neurodegenerative drug discovery. Here, we present the classification of PDE10-Is from a medicinal chemistry point of view across a wide range of different, drug-like chemotypes starting from theophylline and caffeine analogs, papaverine and dimethoxy catechol type PDE10-Is, TP-10, MP-10, MP-10/papaverine/quinazoline series inhibitors, and ending with the newest inhibitors obtained from fragment-based lead discovery (FBLD). The authors have collated recent research on inhibition of PDE10A as a promising therapeutic strategy for psychiatric and neurodegenerative diseases, based on its efficacy in animal models of schizophrenia, Parkinson's, Huntington's, and Alzheimer's diseases. This review also presents pharmacological data on PDE10-Is as possible therapeutics for the treatment of cognitive deficits, obesity and depression. Moreover, it summarizes the current strategies for PDE10-Is drug discovery based on the results of clinical trials. The authors also present the latest studies on crystal structures of PDE10 complexes with novel inhibitors.


Assuntos
Descoberta de Drogas , Transtornos Mentais/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos , Transtornos Mentais/metabolismo , Estrutura Molecular , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/química , Inibidores de Fosfodiesterase/química
19.
Pharmacol Rep ; 68(5): 886-93, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27351944

RESUMO

BACKGROUND: 5,5-Diphenylhydantoin (Phenytoin) is a well-known anticonvulsant and antiarrhythmic drug which may cause unwanted side effects. In order to avoid the adverse effects of phenytoin, especially on the central nervous and cardiovascular systems, two small series of amine derivatives (Mannich bases) and amide ones were designed containing ß-tetralinohydantoin system. In preliminary studies, some of arylpiperazinylmethyl derivatives with a ß-tetralinohydantoin moiety were effective in screening anticonvulsant tests in mice. METHODS: These new amine and amide derivatives of ß-tetralinohydantoin were evaluated in standard anticonvulsant screens (maximal electroshock (MES) or pentylenetetrazole (scPTZ) seizure tests) and their neurotoxicity was assessed in standardized rotarod tests. Additionally, due to structural features (a hydantoin ring), influence on antiarrhythmic activity, electrocardiogram components and blood pressure was tested in rats. RESULTS: The new N-Mannich bases were effective in maximal electroshock or pentylenetetrazole seizures screens; and the most interesting compound 4 (1-{[4-(1-phenyethyl)-piperazin-1-yl]methyl}-3',4'-dihydro-1'H,2H,5H-spiro[imidazolidine-4,2'-naphthalene]-2,5-dione) displayed anticonvulsant activity in both the aforementioned tests. Furthermore, compound 6, an amide derivative of ß-tetralinohydantoin, displayed significant antiarrhythmic activity in a barium chloride-induced arrhythmia model (ED50 16.3mg/kg), but it was devoid of anticonvulsant protection. None of the tested compounds affected the electrocardiogram components or blood pressure in normotensive rats. CONCLUSION: All new N-Mannich bases containing the ß-tetralinohydantoin system and 1-phenylalkylpiperazine were classified to Anticonvulsant Screening Program 1st class. In contrast, our results suggested that the introduction of an amide bond in the alkyl side chain of the ß-tetralinohydantoin system abolished the anticonvulsant activity, but not the antiarrhythmic one. However, further studies are required for a definitive conclusion.


Assuntos
Amidas/química , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Bases de Mannich/química , Fenitoína/química , Animais , Antiarrítmicos/efeitos adversos , Anticonvulsivantes/efeitos adversos , Modelos Animais de Doenças , Desenho de Fármacos , Eletrochoque/métodos , Masculino , Síndromes Neurotóxicas/etiologia , Pentilenotetrazol/química , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod/métodos , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade
20.
Pharmacol Rep ; 68(3): 529-35, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26891242

RESUMO

BACKGROUND: Antiepileptic drugs are commonly used in non-epileptic disorders. For example, phenytoin and levetiracetam demonstrate analgesic properties in rodent models of pain. In order to enhance their antinociceptive activity, structural features of phenytoin and levetiracetam, such as imidazolidine-2,4-dione and amide bond in alkyl chain, were combined in one molecule. Furthermore, in preliminary studies, methoxyphenylpiperazinpropyl derivatives of imidazolidine-2,4-dione acted as antinociceptive agents in several rodent models of acute pain. METHODS: The final compounds and the reference drugs - levetiracetam and phenytoin were evaluated in the hot plate test to assess their antinociceptive activity in this acute pain model. Furthermore, for the analgesic active compounds the impact on animals' locomotor activity and motor performance were estimated and the affinity to serotonergic (5-HT1A, 5-HT7) and adrenergic (α1) receptors was determined. RESULTS: Three of the tested compounds: 7, 15 and 18 showed statistically significant antinociceptive properties at the dose of 30mg/kg. Among them, compound 18, 1-methyl-3-[1-(morpholin-4-yl)-1-oxobutan-2-yl]imidazolidine-2,4-dione, exhibited the most significant and long-lasting antinociceptive activity. Noteworthy, this activity was not associated with a negative effect on animals' motor functions. Serotonergic or adrenergic neurotransmission is not involved in this antinociceptive effect. CONCLUSION: Some amide derivatives of imidazolidine-2,4-diones possess antinociceptive properties in mice but further studies are needed to explain their mechanism of action and assess their toxicity.


Assuntos
Dor Aguda/tratamento farmacológico , Amidas/farmacologia , Analgésicos/farmacologia , Imidazolidinas/química , Amidas/síntese química , Amidas/uso terapêutico , Analgésicos/síntese química , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Imidazolidinas/farmacologia , Imidazolidinas/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Medição da Dor/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA