Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e17229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063470

RESUMO

Evolution of phenotypic plasticity requires genotype-environment interaction. The discovery of two large-effect loci in the vgll3 and six6 genomic regions associated with the number of years the Atlantic salmon spend feeding at sea before maturation (sea age), provides a unique opportunity to study evolutionary potential of phenotypic plasticity. Using data on 1246 Atlantic salmon caught in the River Surna in Norway, we show that variation in mean sea age among years (smolt cohorts 2013-2018) is influenced by genotype frequencies as well as interaction effects between genotype and year. Genotype-year interactions suggest that genotypes may differ in their response to environmental variation across years, implying genetic variation in phenotypic plasticity. Our results also imply that plasticity in sea age will evolve as an indirect response to selection on mean sea age due to a shared genetic basis. Furthermore, we demonstrate differences between years in the additive and dominance functional genetic effects of vgll3 and six6 on sea age, suggesting that evolutionary responses will vary across environments. Considering the importance of age at maturity for survival and reproduction, genotype-environment interactions likely play an important role in local adaptation and population demography in Atlantic salmon.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Genótipo , Reprodução/genética , Genoma , Adaptação Fisiológica , Fatores de Transcrição
2.
Proc Natl Acad Sci U S A ; 119(44): e2207634119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279467

RESUMO

Understanding the potential of natural populations to adapt to altered environments is becoming increasingly relevant in evolutionary research. Currently, our understanding of adaptation to human alteration of the environment is hampered by lack of knowledge on the genetic basis of traits, lack of time series, and little or no information on changes in optimal trait values. Here, we used time series data spanning nearly a century to investigate how the body mass of Atlantic salmon (Salmo salar) adapts to river regulation. We found that the change in body mass followed the change in waterflow, both decreasing to ∼1/3 of their original values. Allele frequency changes at two loci in the regions of vgll3 and six6 predicted more than 80% of the observed body mass reduction. Modeling the adaptive dynamics revealed that the population mean lagged behind its optimum before catching up approximately six salmon generations after the initial waterflow reduction. Our results demonstrate rapid adaptation mediated by large-effect loci and provide insight into the temporal dynamics of evolutionary rescue following human disturbance.


Assuntos
Salmo salar , Animais , Adaptação Fisiológica/genética , Tamanho Corporal/genética , Frequência do Gene , Rios , Salmo salar/genética
3.
Mar Pollut Bull ; 183: 114099, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088687

RESUMO

The pearl-farming industry depends mostly on the natural recruitment of pearl oysters. Little is known about the relative influence of different ecological processes on the natural recruitment of pearl oysters across biogeographical scales. Spatio-temporal dynamics of bivalve larvae and spats were described at Ahe and Mangareva, 1500 km apart across French Polynesia. We quantified the effect of candidate environmental predictors on the dynamics of larvae. Both lagoons showed similar temporal dynamics with twice more larvae and 6 times more spat in Ahe. Pinctada maculata spat were more abundant than for P. margaritifera at both lagoons. While the temporal dynamics in larvae abundance were best explained by a positive effect of temperature in Ahe, the dynamics in Mangareva were poorly predicted by the environmental variables, meaning bivalve early-life stages perform better in Ahe than Mangareva suggesting a mismatch between the relevant environmental forces driving larval dynamics at these two contrasting lagoons.


Assuntos
Aquicultura , Pinctada , Agricultura , Animais , Larva , Polinésia , Temperatura
4.
Nat Ecol Evol ; 2(11): 1800-1807, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30275465

RESUMO

Understanding the mechanisms by which populations adapt to their environments is a fundamental aim in biology. However, it remains challenging to identify the genetic basis of traits, provide evidence of genetic changes and quantify phenotypic responses. Age at maturity in Atlantic salmon represents an ideal trait to study contemporary adaptive evolution as it has been associated with a single locus in the vgll3 region and has also strongly changed in recent decades. Here, we provide an empirical example of contemporary adaptive evolution of a large-effect locus driving contrasting sex-specific evolutionary responses at the phenotypic level. We identified an 18% decrease in the vgll3 allele associated with late maturity in a large and diverse salmon population over 36 years, induced by sex-specific selection during sea migration. Those genetic changes resulted in a significant evolutionary response only in males, due to sex-specific dominance patterns and vgll3 allelic effects. The vgll3 allelic and dominance effects differed greatly in a second population and were likely to generate different selection and evolutionary patterns. Our study highlights the importance of knowledge of genetic architecture to better understand fitness trait evolution and phenotypic diversity. It also emphasizes the potential role of adaptive evolution in the trend towards earlier maturation observed in numerous Atlantic salmon populations worldwide.


Assuntos
Evolução Biológica , Fenótipo , Salmo salar/fisiologia , Maturidade Sexual/genética , Fatores Etários , Animais , Feminino , Proteínas de Peixes , Masculino , Salmo salar/genética , Fatores Sexuais
5.
R Soc Open Sci ; 2(7): 150144, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26587271

RESUMO

Cultured pearls are human creations formed by inserting a nucleus and a small piece of mantle tissue into a living shelled mollusc, usually a pearl oyster. Although many pearl observations intuitively suggest a possible rotation of the nucleated pearl inside the oyster, no experimental demonstration of such a movement has ever been done. This can be explained by the difficulty of observation of such a phenomenon in the tissues of a living animal. To investigate this question of pearl rotation, a magnetometer system was specifically engineered to register magnetic field variations with magnetic sensors from movements of a magnetic nucleus inserted in the pearl oyster. We demonstrated that a continuous movement of the nucleus inside the oyster starts after a minimum of 40 days post-grafting and continues until the pearl harvest. We measured a mean angular speed of 1.27° min(-1) calculated for four different oysters. Rotation variability was observed among oysters and may be correlated to pearl shape and defects. Nature's ability to generate so amazingly complex structures like a pearl has delivered one of its secrets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA