Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Elife ; 132024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248648

RESUMO

CXCR4 is a ubiquitously expressed chemokine receptor that regulates leukocyte trafficking and arrest in both homeostatic and pathological states. It also participates in organogenesis, HIV-1 infection, and tumor development. Despite the potential therapeutic benefit of CXCR4 antagonists, only one, plerixafor (AMD3100), which blocks the ligand-binding site, has reached the clinic. Recent advances in imaging and biophysical techniques have provided a richer understanding of the membrane organization and dynamics of this receptor. Activation of CXCR4 by CXCL12 reduces the number of CXCR4 monomers/dimers at the cell membrane and increases the formation of large nanoclusters, which are largely immobile and are required for correct cell orientation to chemoattractant gradients. Mechanistically, CXCR4 activation involves a structural motif defined by residues in TMV and TMVI. Using this structural motif as a template, we performed in silico molecular modeling followed by in vitro screening of a small compound library to identify negative allosteric modulators of CXCR4 that do not affect CXCL12 binding. We identified AGR1.137, a small molecule that abolishes CXCL12-mediated receptor nanoclustering and dynamics and blocks the ability of cells to sense CXCL12 gradients both in vitro and in vivo while preserving ligand binding and receptor internalization.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/química , Quimiocina CXCL12/metabolismo , Regulação Alostérica , Humanos , Animais , Ligação Proteica , Domínios Proteicos , Modelos Moleculares
2.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597186

RESUMO

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Assuntos
Actomiosina , Molécula 1 de Adesão Intercelular , Animais , Camundongos , Humanos , Actomiosina/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Citoesqueleto de Actina/metabolismo , Leucócitos/metabolismo , Polaridade Celular
3.
Front Immunol ; 13: 925559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903108

RESUMO

Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.


Assuntos
Receptores CXCR4 , Esfingomielinas , Movimento Celular , Ceramidas/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Humanos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(21): e2119483119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588454

RESUMO

Chemokine receptor nanoscale organization at the cell membrane is orchestrated by the actin cytoskeleton and influences cell responses. Using single-particle tracking analysis we show that CXCR4R334X, a truncated mutant chemokine receptor linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), fails to nanoclusterize after CXCL12 stimulation, and alters the lateral mobility and spatial organization of CXCR4 when coexpressed. These findings correlate with multiple phalloidin-positive protrusions in cells expressing CXCR4R334X, and their inability to correctly sense chemokine gradients. The underlying mechanisms involve inappropriate actin cytoskeleton remodeling due to the inadequate ß-arrestin1 activation by CXCR4R334X, which disrupts the equilibrium between activated and deactivated cofilin. Overall, we provide insights into the molecular mechanisms governing CXCR4 nanoclustering, signaling and cell function, and highlight the essential scaffold role of ß-arrestin1 to support CXCL12-mediated actin reorganization and receptor clustering. These defects associated with CXCR4R334X expression might contribute to the severe immunological symptoms associated with WHIM syndrome.


Assuntos
Doenças da Imunodeficiência Primária , Receptores CXCR4 , Verrugas , Fatores de Despolimerização de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Humanos , Mutação , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Imagem Individual de Molécula , Verrugas/genética , Verrugas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35627487

RESUMO

(1) Background: During the COVID-19 outbreak in the Lazio region, a surge in emergency medical service (EMS) calls has been observed. The objective of present study is to investigate if there is any correlation between the variation in numbers of daily EMS calls, and the short-term evolution of the epidemic wave. (2) Methods: Data from the COVID-19 outbreak has been retrieved in order to draw the epidemic curve in the Lazio region. Data from EMS calls has been used in order to determine Excess of Calls (ExCa) in the 2020−2021 years, compared to the year 2019 (baseline). Multiple linear regression models have been run between ExCa and the first-order derivative (D') of the epidemic wave in time, each regression model anticipating the epidemic progression (up to 14 days), in order to probe a correlation between the variables. (3) Results: EMS calls variation from baseline is correlated with the slope of the curve of ICU admissions, with the most fitting value found at 7 days (R2 0.33, p < 0.001). (4) Conclusions: EMS calls deviation from baseline allows public health services to predict short-term epidemic trends in COVID-19 outbreaks, and can be used as validation of current data, or as an independent estimator of future trends.


Assuntos
COVID-19 , Serviços Médicos de Emergência , Epidemias , COVID-19/epidemiologia , Surtos de Doenças , Humanos , Análise de Séries Temporais Interrompida
6.
J Med Chem ; 64(18): 13439-13450, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34510899

RESUMO

During inflammatory reactions, the production and release of chemotactic factors guide the recruitment of selective leukocyte subpopulations. The alarmin HMGB1 and the chemokine CXCL12, both released in the microenvironment, can form a heterocomplex, which exclusively acts on the chemokine receptor CXCR4, enhancing cell migration, and in some pathological conditions such as rheumatoid arthritis exacerbates the immune response. An excessive cell influx at the inflammatory site can be diminished by disrupting the heterocomplex. Here, we report the computationally driven identification of the first peptide (HBP08) binding HMGB1 and selectively inhibiting the activity of the CXCL12/HMGB1 heterocomplex. Furthermore, HBP08 binds HMGB1 with the highest affinity reported so far (Kd of 0.8 ± 0.4 µM). The identification of this peptide represents an important step toward the development of innovative pharmacological tools for the treatment of severe chronic inflammatory conditions characterized by an uncontrolled immune response.


Assuntos
Quimiocina CXCL12/antagonistas & inibidores , Proteína HMGB1/antagonistas & inibidores , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Humanos , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Receptores CXCR4/metabolismo
7.
Front Immunol ; 11: 550824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072091

RESUMO

The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and ß-arrestins-mediated signaling pathways to sustain chemotaxis. We generated ß-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily ß-arrestin1 dependent, while chemotaxis requires both ß-arrestin1 and ß-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on ß-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the ß-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.


Assuntos
Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Receptores CXCR4/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , Actinas/química , Actinas/metabolismo , Sistemas CRISPR-Cas , Quimiotaxia , Edição de Genes , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico , beta-Arrestina 1/genética , beta-Arrestina 2/genética
8.
Front Immunol ; 11: 720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391018

RESUMO

Chemokines are essential for guiding cell migration. Atypical chemokine receptors (ACKRs) contribute to the cell migration process by binding, internalizing and degrading local chemokines, which enables the formation of confined gradients. ACKRs are heptahelical membrane spanning molecules structurally related to G-protein coupled receptors (GPCRs), but seem to be unable to signal through G-proteins upon ligand binding. ACKR4 internalizes the chemokines CCL19, CCL21, and CCL25 and is best known for shaping functional CCL21 gradients. Ligand binding to ACKR4 has been shown to recruit ß-arrestins that has led to the assumption that chemokine scavenging relies on ß-arrestin-mediated ACKR4 trafficking, a common internalization route taken by class A GPCRs. Here, we show that CCL19, CCL21, and CCL25 readily recruited ß-arrestin1 and ß-arrestin2 to human ACKR4, but found no evidence for ß-arrestin-dependent or independent ACKR4-mediated activation of the kinases Erk1/2, Akt, or Src. However, we demonstrate that ß-arrestins interacted with ACKR4 in the steady-state and contributed to the spontaneous trafficking of the receptor in the absence of chemokines. Deleting the C-terminus of ACKR4 not only interfered with the interaction of ß-arrestins, but also with the uptake of fluorescently labeled cognate chemokines. We identify the GPCR kinase GRK3, and to a lesser extent GRK2, but not GRK4, GRK5, and GRK6, to be recruited to chemokine-stimulated ACKR4. We show that GRK3 recruitment proceded the recruitment of ß-arrestins upon ACKR4 engagement and that GRK2/3 inhibition partially interfered with steady-state interaction and chemokine-driven recruitment of ß-arrestins to ACKR4. Overexpressing ß-arrestin2 accelerated the uptake of fluorescently labeled CCL19, indicating that ß-arrestins contribute to the chemokine scavenging activity of ACKR4. By contrast, cells lacking ß-arrestins were still capable to take up fluorescently labeled CCL19 demonstrating that ß-arrestins are dispensable for chemokine scavenging by ACKR4.


Assuntos
Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiocinas CC/metabolismo , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Receptores CCR/metabolismo , Transdução de Sinais/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , Células HeLa , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Ligação Proteica/genética , Receptores CCR/genética , Receptores CCR7/genética , Receptores CCR7/metabolismo , Transfecção , beta-Arrestina 2/genética
9.
Biochem Biophys Res Commun ; 528(2): 347-358, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32145914

RESUMO

The chemokines receptor family are membrane-expressed class A-specific seven-transmembrane receptors linked to G proteins. Through interaction with the corresponding ligands, the chemokines, they induce a wide variety of cellular responses including cell polarization, movement, immune and inflammatory responses, as well as the prevention of HIV-1 infection. Like a Russian matryoshka doll, the chemokine receptor system is more complex than initially envisaged. This review focuses on the mechanisms that contribute to this dazzling complexity and how they modulate the signaling events triggered by chemokines. The chemokines and their receptors exist as monomers, dimers and oligomers, their expression pattern is highly regulated, and the ligands can bind distinct receptors with similar affinities. The use of novel imaging-based technologies, particularly real-time imaging modalities, has shed new light on the very dynamic conformations that chemokine receptors adopt depending on the cellular context, and that affect chemokine-mediated responses. This complex scenario presents both challenging and exciting opportunities for drug discovery.


Assuntos
Receptores de Quimiocinas/metabolismo , Animais , Quimiocinas/química , Quimiocinas/metabolismo , Fatores Quimiotáticos/metabolismo , Humanos , Multimerização Proteica
10.
Comput Struct Biotechnol J ; 17: 886-894, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333815

RESUMO

High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA