Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2741, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792719

RESUMO

In point-scanning microscopy, optical sectioning is achieved using a small aperture placed in front of the detector, i.e. the detection pinhole, which rejects the out-of-focus background. The maximum level of optical sectioning is theoretically obtained for the minimum size of the pinhole aperture, but this is normally prevented by the dramatic reduction of the detected signal when the pinhole is closed, leading to a compromise between axial resolution and signal-to-noise ratio. We have recently demonstrated that, instead of closing the pinhole, one can reach a similar level of optical sectioning by tuning the pinhole size in a confocal microscope and by analyzing the resulting image series. The method, consisting in the application of the separation of photons by lifetime tuning (SPLIT) algorithm to series of images acquired with tunable pinhole size, is called SPLIT-pinhole (SPLIT-PIN). Here, we share and describe a SPLIT-PIN software for the processing of series of images acquired at tunable pinhole size, which generates images with reduced out-of-focus background. The software can be used on series of at least two images acquired on available commercial microscopes equipped with a tunable pinhole, including confocal and stimulated emission depletion (STED) microscopes. We demonstrate applicability on different types of imaging modalities: (1) confocal imaging of DNA in a non-adherent cell line; (2) removal of out-of-focus background in super-resolved STED microscopy; (3) imaging of live intestinal organoids stained with a membrane dye.

2.
Biophys J ; 121(22): 4358-4367, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36196056

RESUMO

The molecular mechanisms that underlie oncogene-induced genomic damage are still poorly understood. To understand how oncogenes affect chromatin architecture, it is important to visualize fundamental processes such as DNA replication and transcription in intact nuclei and quantify the alterations of their spatiotemporal organization induced by oncogenes. Here, we apply superresolution microscopy in combination with image cross correlation spectroscopy to the U937-PR9 cell line, an in vitro model of acute promyelocytic leukemia that allows us to activate the expression of the PML-RARα oncogene and analyze its effects on the spatiotemporal organization of functional nuclear processes. More specifically, we perform Tau-stimulated emission depletion imaging, a superresolution technique based on the concept of separation of photons by lifetime tuning. Tau-stimulated emission depletion imaging is combined with a robust image analysis protocol that quickly produces a value of colocalization fraction on several hundreds of single cells and allows observation of cell-to-cell variability. Upon activation of the oncogene, we detect a significant increase in the fraction of transcription sites colocalized with PML/PML-RARα. This increase of colocalization can be ascribed to oncogene-induced disruption of physiological PML bodies and the abnormal occurrence of a relatively large number of PML-RARα microspeckles. We also detect a significant cell-to-cell variability of this increase of colocalization, which can be ascribed, at least in part, to a heterogeneous response of the cells to the activation of the oncogene. These results prove that our method efficiently reveals oncogene-induced alterations in the spatial organization of nuclear processes and suggest that the abnormal localization of PML-RARα could interfere with the transcription machinery, potentially leading to DNA damage and genomic instability.


Assuntos
Leucemia Promielocítica Aguda , Proteínas de Fusão Oncogênica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Oncogenes , Análise Espectral
3.
Microsc Res Tech ; 85(9): 3207-3216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686877

RESUMO

Confocal fluorescence microscopy is a well-established imaging technique capable of generating thin optical sections of biological specimens. Optical sectioning in confocal microscopy is mainly determined by the size of the pinhole, a small aperture placed in front of a point detector. In principle, imaging with a closed pinhole provides the highest degree of optical sectioning. In practice, the dramatic reduction of signal-to-noise ratio (SNR) at smaller pinhole sizes makes challenging the use of pinhole sizes significantly smaller than 1 Airy Unit (AU). Here, we introduce a simple method to "virtually" perform confocal imaging at smaller pinhole sizes without the dramatic reduction of SNR. The method is based on the sequential acquisition of multiple confocal images acquired at different pinhole aperture sizes and image processing based on a phasor analysis. The implementation is conceptually similar to separation of photons by lifetime tuning (SPLIT), a technique that exploits the phasor analysis to achieve super-resolution, and for this reason we call this method SPLIT-pinhole (SPLIT-PIN). We show with simulated data that the SPLIT-PIN image can provide improved optical sectioning (i.e., virtually smaller pinhole size) but better SNR with respect to an image obtained with closed pinhole. For instance, two images acquired at 2 and 1 AU can be combined to obtain a SPLIT-PIN image with a virtual pinhole size of 0.2 AU but with better SNR. As an example of application to biological imaging, we show that SPLIT-PIN improves confocal imaging of the apical membrane in an in vitro model of the intestinal epithelium. RESEARCH HIGHLIGHTS: We describe a method to boost the optical sectioning power of any confocal microscope. The method is based on the sequential acquisition of multiple confocal images acquired at different pinhole aperture sizes. The resulting image series is analyzed using the phasor-based separation of photons by lifetime tuning (SPLIT) algorithm. The SPLIT-pinhole (SPLIT-PIN) method produces images with improved optical sectioning but preserved SNR. This is the first time that the phasor analysis and SPLIT algorithms are used to exploit the spatial information encoded in a tunable pinhole size and to improve optical sectioning of the confocal microscope.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Técnicas Histológicas , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
4.
Sci Rep ; 11(1): 20782, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675304

RESUMO

Quantifying the imaging performances in an unbiased way is of outmost importance in super-resolution microscopy. Here, we describe an algorithm based on image correlation spectroscopy (ICS) that can be used to assess the quality of super-resolution images. The algorithm is based on the calculation of an autocorrelation function and provides three different parameters: the width of the autocorrelation function, related to the spatial resolution; the brightness, related to the image contrast; the relative noise variance, related to the signal-to-noise ratio of the image. We use this algorithm to evaluate the quality of stimulated emission depletion (STED) images of DNA replication foci in U937 cells acquired under different imaging conditions. Increasing the STED depletion power improves the resolution but may reduce the image contrast. Increasing the number of line averages improves the signal-to-noise ratio but facilitates the onset of photobleaching and subsequent reduction of the image contrast. Finally, we evaluate the performances of two different separation of photons by lifetime tuning (SPLIT) approaches: the method of tunable STED depletion power and the commercially available Leica Tau-STED. We find that SPLIT provides an efficient way to improve the resolution and contrast in STED microscopy.

5.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046220

RESUMO

Honokiol (2) is a natural bisphenol neolignan showing a variety of biological properties, including antitumor activity. Some studies pointed out 2 as a potential anticancer agent in view of its antiproliferative and pro-apoptotic activity towards tumor cells. As a further contribution to these studies, we report here the synthesis of a small library of bisphenol neolignans inspired by honokiol and the evaluation of their antiproliferative activity. The natural lead was hence subjected to simple chemical modifications to obtain the derivatives 3-9; further neolignans (12a-c, 13a-c, 14a-c, and 15a) were synthesized employing the Suzuki-Miyaura reaction, thus obtaining bisphenols with a substitution pattern different from honokiol. These compounds and the natural lead were subjected to antiproliferative assay towards HCT-116, HT-29, and PC3 tumor cell lines. Six of the neolignans show GI50 values lower than those of 2 towards all cell lines. Compounds 14a, 14c, and 15a are the most effective antiproliferative agents, with GI50 in the range of 3.6-19.1 µM, in some cases it is lower than those of the anticancer drug 5-fluorouracil. Flow cytometry experiments performed on these neolignans showed that the inhibition of proliferation is mainly due to an apoptotic process. These results indicate that the structural modification of honokiol may open the way to obtaining antitumor neolignans more potent than the natural lead.


Assuntos
Compostos Benzidrílicos/síntese química , Compostos Benzidrílicos/farmacologia , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Lignanas/síntese química , Lignanas/farmacologia , Fenóis/síntese química , Fenóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HCT116 , Células HT29 , Humanos , Lignanas/química , Células PC-3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA