Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 156: 108619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128441

RESUMO

Herein, we developed a new waste solution-free paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva, by combining vertical and lateral flow. In detail, the device was constituted of a reservoir containing all reagents for the construction of the immunological chain onto the magnetic beads and a lateral flow holder which contained a polyester-based electrode, a magnet, and an adsorbent pad. The measurement was carried out by adding the saliva sample into the reservoir, followed by the addition of this solution in the hole present in the lateral flow holder. The successive additions of washing buffer and TMB solution in the lateral flow holder allowed the detection of N protein in saliva in the range of 0.06 to 4 µg/mL with a detection limit equal to 30 ng/mL. The analysis of several saliva samples with the sensing tool and the reference method, demonstrated the effectiveness of this device, being able to identify positive patients with high values of CT e.g. 35. This new configuration paves the way for the realization of any magnetic beads-based immunosystem without waste solution production, enlarging the application of paper-based devices.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Saliva , SARS-CoV-2 , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Smartphone , COVID-19/diagnóstico , Limite de Detecção , Técnicas Eletroquímicas/métodos , Eletrodos
2.
Biosens Bioelectron ; 183: 113210, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852978

RESUMO

Botulinum neurotoxins (BoNTs) produced by soil bacterium Clostridium botulinum are cause of botulism and listed as biohazard agents, thus rapid screening assays are needed for taking the correct countermeasures in a timely fashion. The gold standard method relies on the mouse lethality assay with a lengthy analysis time, i.e., 2-5 days, hindering the prompt management of food safety and medical diagnosis. Herein, we propose the first paper-based antibody-free sensor for reliable and rapid detection of BoNT/A and BoNT/C, exploiting their cleavage capability toward a synthetic peptide able to mimic the natural substrate SNAP-25. The peptide is labelled with the electroactive molecule methylene blue and immobilized on the paper-based electrode modified with gold nanoparticles. Because BoNT/A and BoNT/C can cleave the peptide with the removal of methylene blue from electrode surface, the presence of these neurotoxins in the sample leads to a signal decrease proportional to BoNT amount. The biosensor developed with the selected peptide and combined with smartphone assisted potentiostat is able to detect both BoNT/A and BoNT/C with a linearity up to 1 nM and a detection limit equal to 10 pM. The applicability of this biosensor was evaluated with spiked samples of orange juice, obtaining recovery values equal to 104 ± 6% and 98 ± 9% for 1 nM and 0.5 nM of BoNT/A, respectively.


Assuntos
Técnicas Biossensoriais , Toxinas Botulínicas Tipo A , Nanopartículas Metálicas , Animais , Ouro , Limite de Detecção , Camundongos , Peptídeos , Sorogrupo
3.
Biosens Bioelectron ; 171: 112686, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086175

RESUMO

The diffusion of novel SARS-CoV-2 coronavirus over the world generated COVID-19 pandemic event as reported by World Health Organization on March 2020. The huge issue is the high infectivity and the absence of vaccine and customised drugs allowing for hard management of this outbreak, thus a rapid and on site analysis is a need to contain the spread of COVID-19. Herein, we developed an electrochemical immunoassay for rapid and smart detection of SARS-CoV-2 coronavirus in saliva. The electrochemical assay was conceived for Spike (S) protein or Nucleocapsid (N) protein detection using magnetic beads as support of immunological chain and secondary antibody with alkaline phosphatase as immunological label. The enzymatic by-product 1-naphtol was detected using screen-printed electrodes modified with carbon black nanomaterial. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S and N protein in buffer solution and untreated saliva with a detection limit equal to 19 ng/mL and 8 ng/mL in untreated saliva, respectively for S and N protein. Its effectiveness was assessed using cultured virus in biosafety level 3 and in saliva clinical samples comparing the data using the nasopharyngeal swab specimens tested with Real-Time PCR. The agreement of the data, the low detection limit achieved, the rapid analysis (30 min), the miniaturization, and portability of the instrument combined with the easiness to use and no-invasive sampling, confer to this analytical tool high potentiality for market entry as the first highly sensitive electrochemical immunoassay for SARS-CoV-2 detection in untreated saliva.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Saliva/virologia , COVID-19 , Teste para COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Imãs/química , Proteínas do Nucleocapsídeo/análise , Pandemias , Fosfoproteínas , SARS-CoV-2 , Sensibilidade e Especificidade , Fuligem/química , Glicoproteína da Espícula de Coronavírus/análise
4.
Biosens Bioelectron ; 126: 640-646, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30522085

RESUMO

Herein, we report an impedimetric DNA-based aptamer sensor for a single-step detection of B. anthracis spore simulant (B. cereus spore). Specifically, we designed a miniaturized label-free aptasensor for B. cereus spores based on a gold screen-printed electrode functionalized with B. cereus spores-binding aptamer (BAS-6R). Several parameters were optimized to fabricate the aptasensor such as the concentration of DNA aptamer solution (0.5 µM), the time (48 h), the temperature (4 °C), and the pH (7.5) for aptamer immobilization on the working electrode surface. Once the aptasensor was developed, it was tested against B. cereus spores 14579 evaluating the effect of incubation time and MgCl2 concentration. Under the optimized conditions (incubation time equal to 3 h and absence of MgCl2), B. cereus spores 14579 were detected with a linear range between 104 CFU/ml and 5 × 106 CFU/ml and a detection limit of 3 × 103 CFU/ml. Furthermore, the study of selectivity toward B. cereus 11778, B. subtilis, Legionella pneumophila, and Salmonella Typhimurium has demonstrated the capability of this sensor to detect B. cereus spores, proving the suitability of the DNA-based sensing element combined with a portable instrument for a label-free measurement on site of B. anthracis spore simulant.


Assuntos
Aptâmeros de Nucleotídeos/química , Bacillus anthracis/isolamento & purificação , Técnicas Biossensoriais , Esporos Bacterianos/isolamento & purificação , Bacillus anthracis/patogenicidade , Técnicas Eletroquímicas , Ouro/química , Humanos , Esporos Bacterianos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA