Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Rep ; 42(4): 112295, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36947543

RESUMO

Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.


Assuntos
Neuralgia , Corno Dorsal da Medula Espinal , Animais , Camundongos , Corno Dorsal da Medula Espinal/patologia , Medula Espinal , Células do Corno Posterior/fisiologia , Transmissão Sináptica , Interneurônios/fisiologia , Proteínas Proto-Oncogênicas c-maf
2.
Science ; 376(6590): eabf7052, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420958

RESUMO

Experience-dependent changes in behavior are mediated by long-term functional modifications in brain circuits. Activity-dependent plasticity of synaptic input is a major underlying cellular process. Although we have a detailed understanding of synaptic and dendritic plasticity in vitro, little is known about the functional and plastic properties of active dendrites in behaving animals. Using deep brain two-photon Ca2+ imaging, we investigated how sensory responses in amygdala principal neurons develop upon classical fear conditioning, a form of associative learning. Fear conditioning induced differential plasticity in dendrites and somas regulated by compartment-specific inhibition. Our results indicate that learning-induced plasticity can be uncoupled between soma and dendrites, reflecting distinct synaptic and microcircuit-level mechanisms that increase the computational capacity of amygdala circuits.


Assuntos
Tonsila do Cerebelo , Condicionamento Clássico , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
3.
Nat Neurosci ; 22(11): 1834-1843, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636447

RESUMO

Learning drives behavioral adaptations necessary for survival. While plasticity of excitatory projection neurons during associative learning has been extensively studied, little is known about the contributions of local interneurons. Using fear conditioning as a model for associative learning, we found that behaviorally relevant, salient stimuli cause learning by tapping into a local microcircuit consisting of precisely connected subtypes of inhibitory interneurons. By employing deep-brain calcium imaging and optogenetics, we demonstrate that vasoactive intestinal peptide (VIP)-expressing interneurons in the basolateral amygdala are activated by aversive events and provide a mandatory disinhibitory signal for associative learning. Notably, VIP interneuron responses during learning are strongly modulated by expectations. Our findings indicate that VIP interneurons are a central component of a dynamic circuit motif that mediates adaptive disinhibitory gating to specifically learn about unexpected, salient events, thereby ensuring appropriate behavioral adaptations.


Assuntos
Aprendizagem por Associação/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Filtro Sensorial/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Medo/psicologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Optogenética
4.
Nat Cell Biol ; 16(11): 1069-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25327288

RESUMO

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4(-/-) mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Ferritinas/metabolismo , Homeostase/fisiologia , Ferro/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Humanos , Lisossomos/metabolismo , Camundongos , Fagossomos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA