Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 96: 153-165, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606521

RESUMO

The need for new approaches to investigate ex vivo the causes and effects of tumor and to achieve improved cancer treatments and medical therapies is particularly urgent for malignant pathologies such as lymphomas and leukemias, whose tissue initiator cells interact with the stroma creating a three-dimensional (3D) protective environment that conventional mono- and bi-dimensional (2D) models are not able to simulate realistically. The solvent-casting particulate leaching (SCPL) technique, that is already a standard method to produce polymer-based scaffolds for bone tissue repair, is proposed here to fabricate innovative 3D porous structures to mimic the bone marrow niche in vitro. Two different polymers, namely a rigid polymethyl methacrylate (PMMA) and a flexible polyurethane (PU), were evaluated to the purpose, whereas NaCl, in the form of common salt table, resulted to be an efficient porogen. The adoption of an appropriate polymer-to-salt ratio, experimentally defined as 1:4 for both PMMA and PU, gave place to a rich and interconnected porosity, ranging between 82.1 vol% and 91.3 vol%, and the choice of admixing fine-grained or coarse-grained salt powders allowed to control the final pore size. The mechanical properties under compression load were affected both by the polymer matrix and by the scaffold's architecture, with values of the elastic modulus indicatively varying between 29 kPa and 1283 kPa. Preliminary tests performed with human stromal HS-5 cells co-cultured with leukemic cells allowed us to conclude that stromal cells grown associated to the supports keep their well-known protective and pro-survival effect on cancer cells, indicating that these devices can be very useful to mimic the bone marrow microenvironment and therefore to assess the efficacy of novel therapies in pre-clinical studies.


Assuntos
Células da Medula Óssea/metabolismo , Matriz Óssea/química , Microambiente Celular , Alicerces Teciduais/química , Células da Medula Óssea/citologia , Técnicas de Cocultura , Módulo de Elasticidade , Humanos , Células Jurkat , Polimetil Metacrilato/química , Poliuretanos/química , Células Estromais/citologia , Células Estromais/metabolismo
2.
Adv Biol Regul ; 68: 2-9, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576448

RESUMO

A main cause of treatment failure for AML patients is resistance to chemotherapy. Survival of AML cells may depend on mechanisms that elude conventional drugs action and/or on the presence of leukemia initiating cells at diagnosis, and their persistence after therapy. MDR1 gene is an ATP-dependent drug efflux pump known to be a risk factor for the emergence of resistance, when combined to unstable cytogenetic profile of AML patients. In the present study, we analyzed the sensitivity to conventional chemotherapeutic drugs of 26 samples of primary blasts collected from AML patients at diagnosis. Detection of cell viability and apoptosis allowed to identify two group of samples, one resistant and one sensitive to in vitro treatment. The cells were then analyzed for the presence and the activity of P-glycoprotein. A comparative analysis showed that resistant samples exhibited a high level of MDR1 mRNA as well as of P-glycoprotein content and activity. Moreover, they also displayed high PI3K signaling. Therefore, we checked whether the association with signaling inhibitors might resensitize resistant samples to chemo-drugs. The combination showed a very potent cytotoxic effect, possibly through down modulation of MDR1, which was maintained also when primary blasts were co-cultured with human stromal cells. Remarkably, dual PI3K/mTOR inactivation was cytotoxic also to leukemia initiating cells. All together, our findings indicate that signaling activation profiling associated to gene expression can be very useful to stratify patients and improve therapy.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citarabina/farmacologia , Etoposídeo/farmacologia , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA