Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Nucl Med ; 64(12): 1941-1948, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38040444

RESUMO

Fibroblast activation protein α (FAP) is highly expressed on cancer-associated fibroblasts of epithelial-derived cancers. Breast, colon, and pancreatic tumors often show strong desmoplastic reactions, which result in a dominant presence of stromal cells. FAP has gained interest as a target for molecular imaging and targeted therapies. Single-domain antibodies (sdAbs) are the smallest antibody-derived fragments with beneficial pharmacokinetic properties for molecular imaging and targeted therapy. Methods: We describe the generation, selection, and characterization of a sdAb against FAP. In mice, we assessed its imaging and therapeutic potential after radiolabeling with tracer-dose 131I and 68Ga for SPECT and PET imaging, respectively, and with 131I and 225Ac for targeted radionuclide therapy. Results: The lead sdAb, 4AH29, exhibiting picomolar affinity for a distinct FAP epitope, recognized both purified and membrane-bound FAP protein. Radiolabeled versions, including [68Ga]Ga-DOTA-4AH29, [225Ac]Ac-DOTA-4AH29, and [131I]I-guanidinomethyl iodobenzoate (GMIB)-4AH29, displayed radiochemical purities exceeding 95% and effectively bound to recombinant human FAP protein and FAP-positive GM05389 human fibroblasts. These radiolabeled compounds exhibited rapid and specific accumulation in human FAP-positive U87-MG glioblastoma tumors, with low but specific uptake in lymph nodes, uterus, bone, and skin (∼2-3 percentage injected activity per gram of tissue [%IA/g]). Kidney clearance of unbound [131I]I-GMIB-4AH29 was fast (<1 %IA/g after 24 h), whereas [225Ac]Ac-DOTA-4AH29 exhibited slower clearance (8.07 ± 1.39 %IA/g after 24 h and 2.47 ± 0.18 %IA/g after 96 h). Mice treated with [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 demonstrated prolonged survival compared with those receiving vehicle solution. Conclusion: [68Ga]Ga-DOTA-4AH29 and [131I]I-GMIB-4AH29 enable precise FAP-positive tumor detection in mice. Therapeutic [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit strong and sustained tumor targeting, resulting in dose-dependent therapeutic effects in FAP-positive tumor-bearing mice, albeit with kidney toxicity observed later for [225Ac]Ac-DOTA-4AH29. This study confirms the potential of radiolabeled sdAb 4AH29 as a radiotheranostic agent for FAP-positive cancers, warranting clinical evaluation.


Assuntos
Neoplasias Pancreáticas , Anticorpos de Domínio Único , Feminino , Humanos , Animais , Camundongos , Anticorpos de Domínio Único/metabolismo , Radioisótopos de Gálio , Neoplasias Pancreáticas/patologia , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral
2.
Pharmaceutics ; 15(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242621

RESUMO

The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.

3.
J Nucl Med ; 64(5): 751-758, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055223

RESUMO

Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Methods: Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with 225Ac in a human CD20 and ovalbumin expressing B16-melanoma model. Results: Tumor growth was delayed with α-TRT and increased blood levels of various cytokines such as interferon-γ, C-C motif chemokine ligand 5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1. Peripheral antitumoral T-cell responses were detected on α-TRT. At the tumor site, α-TRT modulated the cold tumor microenvironment (TME) to a more hospitable and hot habitat for antitumoral immune cells, characterized by a decrease in protumoral alternatively activated macrophages and an increase in antitumoral macrophages and dendritic cells. We also showed that α-TRT increased the percentage of programmed death-ligand 1 (PD-L1)-positive (PD-L1pos) immune cells in the TME. To circumvent this immunosuppressive countermeasure we applied immune checkpoint blockade of the programmed cell death protein 1-PD-L1 axis. Combination of α-TRT with PD-L1 blockade potentiated the therapeutic effect, however, the combination aggravated adverse events. A long-term toxicity study revealed severe kidney damage ensuing from α-TRT. Conclusion: These data suggest that α-TRT alters the TME and induces systemic antitumoral immune responses, which explains why immune checkpoint blockade enhances the therapeutic effect of α-TRT. However, further optimization is warranted to avoid adverse events.


Assuntos
Melanoma Experimental , Anticorpos de Domínio Único , Animais , Humanos , Anticorpos de Domínio Único/farmacologia , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação , Melanoma Experimental/radioterapia , Imunidade , Linhagem Celular Tumoral
4.
J Nucl Med ; 64(3): 493-499, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36229185

RESUMO

Suborgan absorbed dose estimates in mouse kidneys are crucial to support preclinical nephrotoxicity analyses of α- and ß-particle-emitting radioligands exhibiting a heterogeneous activity distribution in the kidneys. This is, however, limited by the scarcity of reference dose factors (S values) available in the literature for specific mouse kidney tissues. Methods: A computational multiregion model of a mouse kidney based on high-resolution MRI data from a healthy mouse kidney was developed. The model was used to calculate S values for 5 kidney tissues (cortex, outer and inner stripes of outer medulla, inner medulla, and papilla and pelvis) for a wide range of ß- or α-emitting radionuclides (45 in total) of interest for radiopharmaceutical therapy, using Monte Carlo calculations. Additionally, regional S values were applied for a 131I-labeled single-domain antibody fragment with predominant retention in the outer stripe of the renal outer medulla. Results: The heterogeneous activity distribution in kidneys of considered α- and low- to medium-energy ß-emitters considerably affected the absorbed dose estimation in specific suborgan regions. The suborgan tissue doses resulting from the nonuniform distribution of the 131I-labeled antibody fragment largely deviated (from -40% to 57%) from the mean kidney dose resulting from an assumed uniform activity distribution throughout the whole kidney. The absorbed dose in the renal outer stripe was about 2.0 times higher than in the cortex and in the inner stripe and about 2.6 times higher than in inner tissues. Conclusion: The use of kidney regional S values allows a more realistic estimation of the absorbed dose in different renal tissues from therapeutic radioligands with a heterogeneous uptake in the kidneys. This constitutes an improvement from the simplistic (less accurate) renal dose estimates assuming a uniform distribution of activity throughout kidney tissues. Such improvement in dosimetry is expected to support preclinical studies essential for a better understanding of nephrotoxicity in humans. The dosimetric database has added value in the development of new molecular vectors for radiopharmaceutical therapy.


Assuntos
Rim , Compostos Radiofarmacêuticos , Camundongos , Animais , Humanos , Compostos Radiofarmacêuticos/efeitos adversos , Radiometria/métodos , Radioisótopos do Iodo , Modelos Animais de Doenças
5.
Mol Cancer Ther ; 21(12): 1835-1845, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36129807

RESUMO

Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Feminino , Animais , Humanos , Camundongos , Anticorpos de Domínio Único/química , Actínio/química , Distribuição Tecidual , Linhagem Celular Tumoral , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
6.
Front Immunol ; 13: 911080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865548

RESUMO

Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.


Assuntos
Neoplasias Hematológicas , Linfoma não Hodgkin , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antineoplásicos , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Linfoma não Hodgkin/diagnóstico por imagem , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/radioterapia , Neoplasias/tratamento farmacológico , Radioimunoterapia
7.
Int Rev Cell Mol Biol ; 369: 143-199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777863

RESUMO

Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Anticorpos Monoclonais , Humanos , Neoplasias/tratamento farmacológico , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/uso terapêutico
8.
Mol Cancer Ther ; 21(7): 1136-1148, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499391

RESUMO

Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro. Melanoma-bearing mice received fractionated low and high-dose TRT via tumor targeting anti-human CD20 sdAbs, as opposed to control sdAbs. Tumor growth was delayed with both doses. Low- and high-dose TRT increased IL10 serum levels. Low-dose TRT also decreased CCL5 serum levels. At the tumor, high-dose TRT induced a type I IFN gene signature, while low-dose TRT induced a proinflammatory gene signature. Low- and high-dose TRT increased the percentage of PD-L1pos and PD-L2pos myeloid cells in tumors with a marked increase in alternatively activated macrophages after high-dose TRT. The percentage of tumor-infiltrating T cells was not changed, yet a modest increase in ovalbumin-specific CD8pos T-cells was observed after low-dose TRT. Contradictory, low and high-dose TRT decreased CD4pos Th1 cells in addition to double negative T cells. In conclusion, these data suggest that low and high-dose TRT induce distinct immunologic changes, which might serve as an anchoring point for combination therapy.


Assuntos
Melanoma Experimental , Anticorpos de Domínio Único , Animais , Antígenos CD20 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Lutécio , Melanoma Experimental/patologia , Camundongos , Ovalbumina , Radioisótopos/uso terapêutico
9.
EJNMMI Phys ; 9(1): 13, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35195790

RESUMO

BACKGROUND: In order to acquire accurate drug pharmacokinetic information, which is required for tissue dosimetry, micro-SPECT must be quantitative to allow for an accurate assessment of radioligand activity in the relevant tissue. This study investigates the feasibility of deriving accurate mouse-specific time-integrated drug pharmacokinetic data in mouse kidneys from activity measurements using micro-SPECT. METHODS: An animal experiment was carried out to evaluate the accuracy of 131I activity quantification in mouse kidneys (mean tissue volume of 0.140 mL) using a micro-SPECT system against conventional ex vivo gamma counting (GC) in a NaI(Tl) detector. The imaging setting investigated was that of the mouse biodistribution of a 131I-labelled single-domain antibody fragment (sdAb), currently being investigated for targeted radionuclide therapy of HER2-expressing cancer. SPECT imaging of 131I 365-keV photons was done with a VECTor/CT system (MILabs, Netherlands) using a high-energy mouse collimator with 1.6-mm-diameter pinholes. For both activity quantification techniques, the pharmacokinetic profile of the radioligand from approximately 1-73 h p.i. was derived and the time-integrated activity coefficient per gram of tissue (ã/M) was estimated. Additionally, SPECT activity recovery coefficients were determined in a phantom setting. RESULTS: SPECT activities underestimate the reference activities by an amount that is dependent on the 131I activity concentration in the kidney, and thus on the time point of the pharmacokinetic profile. This underestimation is around - 12% at 1.5 h (2.89 MBq mL-1 mean reference activity concentration), - 13% at 6.6 h (149 kBq mL-1), - 40% at 24 h (17.6 kBq mL-1) and - 46% at 73 h (5.2 kBq mL-1) p.i. The ã/M value estimated from SPECT activities is, nevertheless, within - 14% from the reference (GC) ã/M value. Furthermore, better quantitative accuracy (within 2% from GC) in the SPECT ã/M value is achieved when SPECT activities are compensated for partial recovery with a phantom-based recovery coefficient of 0.85. CONCLUSION: The SPECT imaging system used, together with a robust activity quantification methodology, allows an accurate estimation of time-integrated pharmacokinetic information of the 131I-labelled sdAb in mouse kidneys. This opens the possibility to perform mouse-specific kidney-tissue dosimetry based on pharmacokinetic data acquired in vivo on the same mice used in nephrotoxicity studies.

10.
Mol Cancer Ther ; 21(1): 159-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667109

RESUMO

To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse. However, patient-specific membrane-expressed paraproteins could hold the key to target these residual cells responsible for disease recurrence. Here, we describe the therapeutic potential of radiolabeled, anti-idiotypic camelid single-domain antibody fragments (sdAbs) as tumor-restrictive vehicles against a membrane-bound paraprotein in the syngeneic mouse 5T33 myeloma model and analogously assess the feasibility of sdAb-based personalized medicine for patients with multiple myeloma. Llamas were immunized using extracts containing paraprotein from either murine or human sera, and selective sdAbs were retrieved using competitive phage display selections of immune libraries. An anti-5T33 idiotype sdAb was selected for targeted radionuclide therapy with the ß--particle emitter 177Lu and the α-particle emitter 225Ac. sdAb-based radionuclide therapy in syngeneic mice with a low 5T33 myeloma lesion load significantly delayed tumor progression. In five of seven patients with newly diagnosed myeloma, membrane expression of the paraprotein was confirmed. Starting from serum-isolated paraprotein, for two of three selected patients anti-idiotype sdAbs were successfully generated.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/radioterapia , Medicina de Precisão/métodos , Radioisótopos/uso terapêutico , Anticorpos de Domínio Único/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Radioisótopos/farmacologia , Anticorpos de Domínio Único/farmacologia
11.
Oncoimmunology ; 10(1): 2000699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777918

RESUMO

Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.


Assuntos
Mieloma Múltiplo , Anticorpos de Domínio Único , Actínio , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Humanos , Camundongos , Mieloma Múltiplo/terapia , Família de Moléculas de Sinalização da Ativação Linfocitária , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Hematol Oncol ; 14(1): 183, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727950

RESUMO

BACKGROUND: Antibody-based therapies targeting CD38 are currently used as single agents as well as in combination regimens for multiple myeloma, a malignant plasma cell disorder. In this study, we aimed to develop anti-CD38 single-domain antibodies (sdAbs) that can be used to trace CD38+ tumour cells and subsequently used for targeted radionuclide therapy. SdAbs are derived from Camelidae heavy-chain antibodies and have emerged as promising theranostic agents due to their favourable pharmacological properties. METHODS: Four different anti-CD38 sdAbs were produced, and their binding affinities and potential competition with the monoclonal antibody daratumumab were tested using biolayer interferometry. Their binding kinetics and potential cell internalisation were further studied after radiolabelling with the diagnostic radioisotope Indium-111. The resulting radiotracers were evaluated in vivo for their tumour-targeting potential and biodistribution through single-photon emission computed tomography (SPECT/CT) imaging and serial dissections. Finally, therapeutic efficacy of a lead anti-CD38 sdAb, radiolabelled with the therapeutic radioisotope Lutetium-177, was evaluated in a CD38+ MM xenograft model. RESULTS : We retained anti-CD38 sdAb #2F8 as lead based on its excellent affinity and superior stability, the absence of competition with daratumumab and the lack of receptor-mediated internalisation. When intravenously administered to tumour-xenografted mice, radiolabelled sdAb #2F8 revealed specific and sustained tumour retention with low accumulation in other tissues, except kidneys, resulting in high tumour-to-normal tissue ratios. In a therapeutic setting, myeloma-bearing mice received three consecutive intravenous administrations of a high (18.5 MBq) or a low radioactive dose (9.3 MBq) of 177Lu-DTPA-2F8 or an equal volume of vehicle solution. A dose-dependent tumour regression was observed, which translated into a prolonged median survival from 43 days for vehicle-treated mice, to 62 days (p = 0.027) in mice receiving the low and 65 days in mice receiving the high (p = 0.0007) radioactive dose regimen, respectively. CONCLUSIONS: These results highlight the theranostic potential of radiolabelled anti-CD38 sdAbs for the monitoring and treatment of multiple myeloma.


Assuntos
ADP-Ribosil Ciclase 1/análise , Mieloma Múltiplo/diagnóstico por imagem , Anticorpos de Domínio Único/análise , ADP-Ribosil Ciclase 1/imunologia , Animais , Camelidae , Linhagem Celular Tumoral , Humanos , Lutécio/análise , Lutécio/imunologia , Lutécio/uso terapêutico , Camundongos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Radioisótopos/análise , Radioisótopos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Distribuição Tecidual
13.
J Nucl Med ; 62(8): 1097-1105, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277400

RESUMO

131I-GMIB-anti-human epidermal growth factor receptor type 2 (HER2)-VHH1 is a targeted radionuclide theranostic agent directed at HER2-expressing cancers. VHH1 is a single-domain antibody covalently linked to therapeutic 131I via the linker N-succinimidyl 4-guanidino-methyl-3-iodobenzoate (SGMIB). The phase I study was aimed at evaluating the safety, biodistribution, radiation dosimetry, and tumor-imaging potential of 131I-GMIB-anti-HER2-VHH1 in healthy volunteers and breast cancer patients. Methods: In a first cohort, 6 healthy volunteers were included. The biodistribution of 131I-GMIB-anti-HER2-VHH1 was assessed using whole-body (anterior and posterior) planar images obtained at 40 min and at 2, 4, 24, and 72 h after intravenously administered (38 ± 9 MBq) 131I-GMIB-anti-HER2-VHH1. Imaging data were analyzed using OLINDA/EXM software to determine the dosimetry. Blood and urine samples were obtained over 72 h. In the second cohort, 3 patients with metastatic HER2-positive breast cancer were included. Planar whole-body imaging was performed at 2 and 24 h after injection. Additional SPECT/CT images were obtained after the whole-body images at 2 and 24 h if there was relevant uptake in known cancer lesions. Results: No drug-related adverse events were observed throughout the study. The biologic half-life of 131I-GMIB-anti-HER2-VHH1 in healthy subjects was about 8 h. After intravenous administration, the compound was eliminated from the blood with a 2.5-h half-life. The drug was eliminated primarily via the kidneys. The drug was stable in circulation, and there was no increased accumulation in the thyroid or stomach. The absorbed dose to the kidneys was 1.54 ± 0.25 mGy/MBq, and to bone marrow it was 0.03 ± 0.01 mGy/MBq. SPECT/CT imaging in patients with advanced breast cancer showed focal uptake of 131I-GMIB-anti-HER2-VHH1 in metastatic lesions. Conclusion: Because of its favorable toxicity profile and its uptake in HER2-positive lesions, this radiopharmaceutical can offer new therapeutic options to patients who have progressed on trastuzumab, pertuzumab, or trastuzmab emtansine, given its difference in mode-of-action. A dose escalation is planned in a subsequent phase I/II study to assess the therapeutic window of this compound (NCT04467515).


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Distribuição Tecidual , Trastuzumab
14.
Mol Pharm ; 17(9): 3553-3566, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787284

RESUMO

Targeted alpha-particle therapy (TAT) might be a relevant therapeutic strategy to circumvent resistance to conventional therapies in the case of HER2-positive metastatic cancer. Single-domain antibody fragments (sdAb) are promising vehicles for TAT because of their excellent in vivo properties, high target affinity, and fast clearance kinetics. This study combines the cytotoxic α-particle emitter bismuth-213 (213Bi) and HER2-targeting sdAbs. The in vitro specificity, affinity, and cytotoxic potency of the radiolabeled complex were analyzed on HER2pos cells. Its in vivo biodistribution through serial dissections and via Cherenkov and micro-single-photon emission computed tomography (CT)/CT imaging was evaluated. Finally, the therapeutic efficacy and potential associated toxicity of [213Bi]Bi-DTPA-2Rs15d were evaluated in a HER2pos tumor model that manifests peritoneal metastasis. In vitro, [213Bi]Bi-DTPA-2Rs15d bound HER2pos cells in a HER2-specific way. In mice, high tumor uptake was reached already 15 min after injection, and extremely low uptake values were observed in normal tissues. Co-infusion of gelofusine resulted in a 2-fold reduction in kidney uptake. Administration of [213Bi]Bi-DTPA-2Rs15d alone and in combination with trastuzumab resulted in a significant increase in median survival. We describe for the very first time the successful labeling of an HER2-sdAb with the α-emitter 213Bi, and after intravenous administration, revealing high in vivo stability and specific accumulation in target tissue and resulting in an increased median survival of these mice especially in combination with trastuzumab. These results indicate the potential of [213Bi]Bi-DTPA-sdAb as a new radioconjugate for TAT, alone and as an add-on to trastuzumab for the treatment of HER2pos metastatic cancer.


Assuntos
Bismuto/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Radioisótopos/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Anticorpos de Domínio Único/farmacologia , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/metabolismo , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Trastuzumab/farmacologia
15.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326199

RESUMO

HER2-targeted therapies have drastically improved the outcome for breast cancer patients. However, when metastasis to the brain is involved, current strategies fail to hold up to the same promise. Camelid single-domain antibody-fragments (sdAbs) have been demonstrated to possess favorable properties for detecting and treating cancerous lesions in vivo using different radiolabeling methods. Here we evaluate the anti-HER2 sdAb 2Rs15d, coupled to diagnostic γ- and therapeutic α- and ß--emitting radionuclides for the detection and treatment of HER2pos brain lesions in a preclinical setting. 2Rs15d was radiolabeled with 111In, 225Ac and 131I using DTPA- and DOTA-based bifunctional chelators and Sn-precursor of SGMIB respectively and evaluated in orthotopic tumor-bearing athymic nude mice. Therapeutic efficacy as well as systemic toxicity were determined for 131I- and 225Ac-labeled sdAbs and compared to anti-HER2 monoclonal antibody (mAb) trastuzumab in two different HER2pos tumor models. Radiolabeled 2Rs15d showed high and specific tumor uptake in both HER2pos SK-OV-3-Luc-IP1 and HER2pos MDA-MB-231Br brain lesions, whereas radiolabeled trastuzumab was unable to accumulate in intracranial SK-OV-3-Luc-IP1 tumors. Administration of [131I]-2Rs15d and [225Ac]-2Rs15d alone and in combination with trastuzumab showed a significant increase in median survival in 2 tumor models that remained largely unresponsive to trastuzumab treatment alone. Histopathological analysis revealed no significant early toxicity. Radiolabeled sdAbs prove to be promising vehicles for molecular imaging and targeted radionuclide therapy of metastatic lesions in the brain. These data demonstrate the potential of radiolabeled sdAbs as a valuable add-on treatment option for patients with difficult-to-treat HER2pos metastatic cancer.

16.
N Biotechnol ; 57: 20-28, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32001339

RESUMO

Nanobodies (Nbs) are 15 kDa recombinant, single-domain, antigen-specific fragments derived from heavy-chain only antibodies (HCAbs) occurring naturally in species of Camelidae. The beneficial properties of Nbs make them suitable tracers for diagnostic and therapeutic purposes. Whereas Nbs with a terminal hexa-histidine tag (His-tag) are easily purified via immobilized metal affinity chromatography, previous studies revealed a negative impact of the His-tag on the biodistribution of Nb-based tracers. Thus, it is important to develop alternative purification methods for Nbs without a His-tag. Protein A (SpA), a surface protein of Staphylococcus aureus, binds the Fc-region of IgG molecules and also to a lesser extent human heavy chain family-3 variable (VH) regions. Nbs also belong to this VH family, although many fail to be recognized by SpA. Here it is demonstrated that non-SpA binding Nbs can be mutagenized for purification by SpA affinity chromatography and that these Nb variants retain their thermostability and antigen affinity, while biodistribution remains unaffected.


Assuntos
Anticorpos de Domínio Único/isolamento & purificação , Proteína Estafilocócica A/química , Staphylococcus aureus/química , Cromatografia de Afinidade , Anticorpos de Domínio Único/química
17.
J Control Release ; 317: 34-42, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31734445

RESUMO

A compound's intratumoural distribution is an important determinant for the effectiveness of molecular therapy or imaging. Antibodies (Abs), though often used in the design of targeted compounds, struggle to achieve a homogenous distribution due to their large size and bivalent binding mechanism. In contrast, smaller compounds like nanobodies (Nbs) are expected to distribute more homogenously, though this has yet to be demonstrated in vivo at the microscopic level. We propose an intravital approach to evaluate the intratumoural distribution of different fluorescently labeled monomeric and dimeric Nb tracers and compare this with a monoclonal antibody (mAb). Monomeric and dimeric formats of the anti-HER2 (2Rb17c and 2Rb17c-2Rb17c) and control (R3B23 and R3B23-R3B23) Nb, as well as the dimeric monovalent Nb 2Rb17c-R3B23 were generated and fluorescently labeled with a Cy5 fluorophore. The mAb trastuzumab-Cy5 was also prepared. Whole-body biodistribution of all constructs was investigated in mice bearing subcutaneous xenografts (HER2+ SKOV3) using in vivo epi-fluorescence imaging. Next, for intravital experiments, GFP-expressing SKOV3 cells were grown under dorsal window chambers on athymic nude mice (n = 3/group), and imaged under a fluorescence stereo microscope immediately after intravenous injection of the tracers. Consecutive fluorescence images within the tumour were acquired over the initial 20 min after injection and later, single images were taken at 1, 3 and 24 h post-injection. Additionally, two-photon microscopy was used to investigate the colocalization of GFP (tumour cells) and Cy5 fluorescence (tracers) at higher resolution. Whole-body images showed rapid renal clearance of all Nbs, and fast tumour targeting for the specific Nbs. Specific tumour uptake of the mAb could only be clearly distinguished from background after several hours. Intravital imaging revealed that monomeric Nb tracers accumulated rapidly and distributed homogenously in the tumour mere minutes after intravenous injection. The dimeric compounds initially achieved lower fluorescence intensities than the monomeric. Furthermore, whereas the HER2-specific dimeric bivalent compound remained closely associated to the blood vessels over 24 h, the HER2-specific dimeric monovalent tracer achieved a more homogenous tumour distribution from 1 h post-injection onwards. Non-specific tracers were not retained in the tumour. Trastuzumab had the most heterogenous intratumoural distribution of all evaluated compounds, while -due to the long blood retention- achieving the highest overall tumour uptake at 24 h post-injection. In conclusion, monomeric Nbs very quickly and homogenously distribute through tumour tissue, at a rate significantly greater than dimeric Nbs and mAbs. This underlines the potential of monomeric Nb tracers and therapeutics in molecular imaging and targeted therapies.


Assuntos
Anticorpos de Domínio Único , Animais , Linhagem Celular Tumoral , Cinética , Camundongos , Camundongos Nus , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único/metabolismo , Distribuição Tecidual
18.
Theranostics ; 9(25): 7772-7791, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695800

RESUMO

Targeted therapy and immunotherapy have become mainstream in cancer treatment. However, only patient subsets benefit from these expensive therapies, and often responses are short-lived or coincide with side effects. A growing modality in precision oncology is the development of theranostics, as this enables patient selection, treatment and monitoring. In this approach, labeled compounds and an imaging technology are used to diagnose patients and select the best treatment option, whereas for therapy, related compounds are used to target cancer cells or the tumor stroma. In this context, nanobodies and nanobody-directed therapeutics have gained interest. This interest stems from their high antigen specificity, small size, ease of labeling and engineering, allowing specific imaging and design of therapies targeting antigens on tumor cells, immune cells as well as proteins in the tumor environment. This review provides a comprehensive overview on the state-of-the-art regarding the use of nanobodies as theranostics, and their importance in the emerging field of personalized medicine.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Anticorpos de Domínio Único/imunologia , Animais , Humanos , Imunoterapia/métodos , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos
19.
J Control Release ; 314: 1-11, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31626860

RESUMO

Radioimmunotherapy (RIT) aims to deliver a high radiation dose to cancer cells, while minimizing the exposure of normal cells. Typically, monoclonal antibodies are used to target the radionuclides to cancer cell surface antigens. However, antibodies face limitations due to their poor tumor penetration and suboptimal pharmacokinetics, while the expression of their target on the cancer cell surface may be gradually lost. In addition, most antigens are expressed in a limited number of tumor types. To circumvent these problems, we developed a Nanobody (Nb)-based RIT against a prominent stromal cell (stromal-targeting radioimmunotherapy or STRIT) present in nearly all tumors, the tumor-associated macrophage (TAM). Macrophage Mannose Receptor (MMR) functions as a stable molecular target on TAM residing in hypoxic areas, further allowing the delivery of a high radiation dose to the more radioresistant hypoxic tumor regions. Since MMR expression is not restricted to TAM, we first optimized a strategy to block extra-tumoral MMR to prevent therapy-induced toxicity. A 100-fold molar excess of unlabeled bivalent Nb largely blocks extra-tumoral binding of 177Lu-labeled anti-MMR Nb and prevents toxicity, while still allowing the intra-tumoral binding of the monovalent Nb. Interestingly, three doses of 177Lu-labeled anti-MMR Nb resulted in a significantly retarded tumor growth, thereby outcompeting the effects of anti-PD1, anti-VEGFR2, doxorubicin and paclitaxel in the TS/A mammary carcinoma model. Together, these data propose anti-MMR STRIT as a valid new approach for cancer treatment.


Assuntos
Adenocarcinoma/radioterapia , Neoplasias Mamárias Experimentais/radioterapia , Radioimunoterapia/métodos , Anticorpos de Domínio Único/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Progressão da Doença , Doxorrubicina/farmacologia , Feminino , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Receptores de Superfície Celular/metabolismo , Células Estromais/imunologia
20.
Pharmaceutics ; 11(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374991

RESUMO

Brain tumors are notoriously difficult to treat. The blood-brain barrier provides a sanctuary site where residual and metastatic cancer cells can evade most therapeutic modalities. The delicate nature of the brain further complicates the decision of eliminating as much tumorous tissue as possible while protecting healthy tissue. Despite recent advances in immunotherapy, radiotherapy and systemic treatments, prognosis of newly diagnosed patients remains dismal, and recurrence is still a universal problem. Several strategies are now under preclinical and clinical investigation to optimize delivery and maximize the cytotoxic potential of pharmaceuticals with regards to brain tumors. This review provides an overview of targeted radionuclide therapy approaches for the treatment of primary brain tumors and brain metastases, with an emphasis on biological targeting moieties that specifically target key biomarkers involved in cancer development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA