Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(8): 12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967942

RESUMO

Purpose: Recruitment and activation of inflammatory cells, such as retinal microglia/macrophages, in the subretinal space contribute significantly to the pathogenesis of age-related macular degeneration (AMD). This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV). Methods: To investigate these roles, we utilized the PlGF-DE knockin (KI) mouse model, which is the full functional knockout (KO) of PlGF. In this model, mice express a variant of PlGF, named PlGF-DE, that is unable to bind and activate VEGFR-1 but can still form heterodimer with VEGF-A. Results: Our findings demonstrate that, although there is no difference in healthy conditions, PlGF-DE-KI mice exhibit decreased microglia reactivity and reduced recruitment of both microglia and monocyte-macrophages, compared to wild-type mice during laser-induced CNV. This impairment is associated with a reduction in VEGF receptor 1 (VEGFR-1) phosphorylation in the retinae of PlGF-DE-KI mice compared to C57Bl6/J mice. Corroborating these data, intravitreal delivery of PlGF or VEGF-A/PlGF heterodimer in PlGF-DE-KI mice rescued the immune cell response at the early phase of CNV compared to VEGF-A delivery. Conclusions: In summary, our study suggests that targeting PlGF and the VEGF-A/PlGF heterodimer, thereby preventing VEGFR-1 activation, could represent a potential therapeutic approach for the management of inflammatory processes in diseases such as AMD.


Assuntos
Neovascularização de Coroide , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular , Animais , Neovascularização de Coroide/metabolismo , Fator de Crescimento Placentário/metabolismo , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microglia/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Camundongos Knockout
2.
Exp Mol Med ; 56(3): 700-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486106

RESUMO

Inflammation plays a crucial role in cancer progression, but the relevance of the inflammasome remains unclear. Alu RNA was the first endogenous nucleic acid shown to activate the NLRP3 (nucleotide-binding domain leucine-rich repeat containing 3) inflammasome. Here, we showed that Alu RNA can induce epithelial-to-mesenchymal transition (EMT) through NLRP3 inflammasome activation and IL-1ß release in colorectal cancer (CRC) cells. Alu RNA is stored, transported and transferred to CRC cells by exosomes. Exosomal Alu RNA promotes tumorigenesis by inducing invasion, metastasis and EMT via NLRP3 inflammasome activation. Consistent with these data, we found that significantly increased Alu RNA expression correlates with the induction of NLRP3 priming in human CRC patients. Furthermore, the level of Alu RNA in circulating exosomes correlates with CRC progression in a preclinical model. These findings reveal the direct involvement of Alu RNA in cancer pathogenesis, and its presence in CRC cell-derived exosomes could be used as a noninvasive diagnostic biomarker.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , RNA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo
3.
EMBO J ; 42(21): e113928, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37712288

RESUMO

To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Insulina , Animais , Camundongos , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Expressão Gênica , Glucose , Lisossomos/metabolismo
4.
Nat Commun ; 11(1): 2461, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424153

RESUMO

It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem da Célula , Fígado/citologia , Fígado/fisiologia , Regeneração/fisiologia , Animais , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/metabolismo , Diferenciação Celular , Proliferação de Células , Colangiocarcinoma/patologia , Regulação para Baixo/genética , Hepatócitos/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Esferoides Celulares/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Regulação para Cima/genética
5.
Br J Pharmacol ; 176(10): 1568-1584, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30074247

RESUMO

BACKGROUND AND PURPOSE: Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH: Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS: CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS: We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Assuntos
Canabidiol/farmacologia , Canabinoides/farmacologia , Cannabis/química , Dronabinol/análogos & derivados , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canabidiol/isolamento & purificação , Canabinoides/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Dronabinol/isolamento & purificação , Dronabinol/farmacologia , Distrofina/genética , Endocanabinoides/metabolismo , Humanos , Masculino , Camundongos , Força Muscular/efeitos dos fármacos , Força Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
6.
Cell Metab ; 25(1): 182-196, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011087

RESUMO

The transcription factor EB (TFEB) is an essential component of lysosomal biogenesis and autophagy for the adaptive response to food deprivation. To address the physiological function of TFEB in skeletal muscle, we have used muscle-specific gain- and loss-of-function approaches. Here, we show that TFEB controls metabolic flexibility in muscle during exercise and that this action is independent of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Indeed, TFEB translocates into the myonuclei during physical activity and regulates glucose uptake and glycogen content by controlling expression of glucose transporters, glycolytic enzymes, and pathways related to glucose homeostasis. In addition, TFEB induces the expression of genes involved in mitochondrial biogenesis, fatty acid oxidation, and oxidative phosphorylation. This coordinated action optimizes mitochondrial substrate utilization, thus enhancing ATP production and exercise capacity. These findings identify TFEB as a critical mediator of the beneficial effects of exercise on metabolism.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Metabolismo , Condicionamento Físico Animal , Adenilato Quinase/metabolismo , Animais , Autofagia/genética , Núcleo Celular/metabolismo , Metabolismo Energético/genética , Genes Mitocondriais , Genoma , Glucose/metabolismo , Homeostase/genética , Insulina/metabolismo , Metabolismo/genética , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transporte Proteico , Transdução de Sinais/genética
7.
Int J Oncol ; 45(1): 31-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24805056

RESUMO

Colorectal cancer is one of the most common and aggressive cancers arising from alterations in various signaling pathways, such as the WNT, RAS-MAPK, PI3K and transforming growth factor-ß (TGF-ß) pathways. Cripto (also called Teratocarcinoma-derived growth factor), the original member of the vertebrate EGF-CFC family, plays a key role in all of these pathways and is deeply involved in early embryo development and cancer progression. The role of Cripto in colon and breast cancer, in particular, has been investigated, as it is still not clearly understood. In this article, we provide the first in vivo functional evidence of a role of Cripto in colon cancer development. We analyzed the effect of Cripto haploinsufficiency on colon tumor formation by treating Cripto heterozygous mice with the colonotropic carcinogen azoxymethane (AOM). Of note, in our model system, Cripto haploinsufficiency increased tumorigenesis. Moreover, we revealed a correlation between the differential AOM response found in wt and Cripto⁺/⁻ mice and the expression levels of glucose regulated protein-78 (Grp78), a heat shock protein required for Cripto signaling pathways. We hypothesize that the balance between Cripto and Grp78 expression levels might be crucial in cancer development and may account for the increased tumorigenesis in Cripto heterozygous mice. In summary, our results highlight the heterogeneous effect of Cripto on tumorigenesis and the consequent high level of complexity in the Cripto regulatory pathway, whose imbalance causes tumors.


Assuntos
Neoplasias do Colo/patologia , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azoximetano , Neoplasias do Colo/genética , Chaperona BiP do Retículo Endoplasmático , Feminino , Regulação Neoplásica da Expressão Gênica , Haploinsuficiência , Camundongos , Neoplasias Experimentais
8.
EMBO Mol Med ; 5(5): 675-90, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23568409

RESUMO

Mucopolysaccharidoses type IIIA (MPS-IIIA) is a neurodegenerative lysosomal storage disorder (LSD) caused by inherited defects of the sulphamidase gene. Here, we used a systemic gene transfer approach to demonstrate the therapeutic efficacy of a chimeric sulphamidase, which was engineered by adding the signal peptide (sp) from the highly secreted iduronate-2-sulphatase (IDS) and the blood-brain barrier (BBB)-binding domain (BD) from the Apolipoprotein B (ApoB-BD). A single intravascular administration of AAV2/8 carrying the modified sulphamidase was performed in adult MPS-IIIA mice in order to target the liver and convert it to a factory organ for sustained systemic release of the modified sulphamidase. We showed that while the IDS sp replacement results in increased enzyme secretion, the addition of the ApoB-BD allows efficient BBB transcytosis and restoration of sulphamidase activity in the brain of treated mice. This, in turn, resulted in an overall improvement of brain pathology and recovery of a normal behavioural phenotype. Our results provide a novel feasible strategy to develop minimally invasive therapies for the treatment of brain pathology in MPS-IIIA and other neurodegenerative LSDs.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/fisiologia , Iduronato Sulfatase/metabolismo , Mucopolissacaridose III/enzimologia , Animais , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Encéfalo/patologia , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Iduronato Sulfatase/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Fenótipo , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transcitose
9.
Hum Gene Ther ; 24(4): 424-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23427808

RESUMO

The BIO14.6 hamster carries a mutation in the delta sarcoglycan gene causing muscular dystrophy and cardiomyopathy. The disease can be prevented by systemic delivery of delta sarcoglycan cDNA using adeno-associated viruses (AAVs). However, all AAVs also target the liver, raising concerns about their therapeutic efficacy in human applications. We compared the AAV2/8 with the chimeric AAV2/2i8, in which the 585-QQNTAP-590 motif of the AAV8 serotype was added to the heparan sulfate receptor footprint of the AAV2 strain. Both vectors carrying the human delta sarcoglycan cDNA were delivered into 24 14-day-old BIO14.6 hamsters. We followed transgene expression in muscle and liver for 7 months. We detected a sustained ectopic expression of delta sarcoglycan in the liver when using AAV2/8 but not AAV2/2i8. Genomic copies of AAV2/2i8 were not detectable in the liver, while at least 100-fold more copies of AAV2/8 were counted. In contrast, the hamster skeletal muscle expressed more delta sarcoglycan using AAV2/2i8 and were still healthy after 7 months at the lower dosage. We conclude that this chimeric vector is a robust option for safer and longer-term diseased muscle targeting.


Assuntos
Dependovirus/genética , Fígado/metabolismo , Distrofias Musculares/prevenção & controle , Animais , Cricetinae , DNA Complementar/genética , DNA Complementar/metabolismo , Terapia Genética , Vetores Genéticos , Masculino , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo , Transgenes
10.
Hum Mol Genet ; 20(23): 4644-54, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21890494

RESUMO

Cardiomyopathy is a puzzling complication in addition to skeletal muscle pathology for patients with mutations in ß-, γ- or δ-sarcoglycan (SG) genes. Patients with mutations in α-SG rarely have associated cardiomyopathy, or their cardiac pathology is very mild. We hypothesize that a fifth SG, ε-SG, may compensate for α-SG deficiency in the heart. To investigate the function of ε-SG in striated muscle, we generated an Sgce-null mouse and a Sgca-;Sgce-null mouse, which lacks both α- and ε-SGs. While Sgce-null mice showed a wild-type phenotype, with no signs of muscular dystrophy or heart disease, the Sgca-;Sgce-null mouse developed a progressive muscular dystrophy and a more anticipated and severe cardiomyopathy. It shows a complete loss of residual SGs and a strong reduction in both dystrophin and dystroglycan. Our data indicate that ε-SG is important in preventing cardiomyopathy in α-SG deficiency.


Assuntos
Distrofina/metabolismo , Miocárdio/metabolismo , Sarcoglicanas/deficiência , Animais , Western Blotting , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Miocárdio/patologia , Miocárdio/ultraestrutura , Condicionamento Físico Animal , Sarcoglicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA