Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Clin Pract ; 14(2): 556-569, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38666801

RESUMO

Background: In recent years, the use of conometric systems to connect dental implant abutments and prosthetic caps has been advocated because they seem to eliminate the side effects reported when using screw- and cement-connected prosthetic restorations. Objectives: The present case study is focused on conometric connection characterization and its performance in terms of the microarchitecture of peri-implant soft tissues by using a cross-linked approach based on optical microscopy and three-dimensional imaging. Methods: Two dental implants were characterized using micro-CT and another identical one was implanted into a patient; the latter was retrieved 45 days later due to changes in prosthetic needs. Afterward, the peri-implant soft tissues were investigated using synchrotron-based phase contrast imaging, histology, and polarized light microscopy. Results: Micro-CT analysis showed perfect adhesion between the abutment and prosthetic cap; histology and polarized light microscopy showed that connective tissue was richly present around the abutment retrieved from the patient. Moreover, the quantitative evaluation of connective tissues using synchrotron imaging, supported by artificial intelligence, revealed that this tissue was rich in mature collagen, with longitudinal and transverse collagen bundles intertwined. The number and connectivity of transverse bundles were consistently greater than those of the longitudinal bundles. Conclusion: It was found that the peri-implant soft tissue was already mature and well organized after only 45 days of implantation, supporting the hypothesis that conometric connections contribute to the significant stabilization of peri-implant soft tissues.

2.
Gels ; 10(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38391432

RESUMO

Organs-on-a-chip (OoCs) are microfluidic devices constituted by PDMS or hydrogel in which different layers of cells are separated by a semipermeable membrane. This technology can set many parameters, like fluid shear stress, chemical concentration gradient, tissue-organ interface, and cell interaction. The use of these devices in medical research permits the investigation of cell patterning, tissue-material interface, and organ-organ interaction, mimicking the complex structures and microenvironment of human and animal bodies. This technology allows us to reconstitute in vitro complex conditions that recapitulate in vivo environments. One of the main advantages of these systems is that they represent a very realistic model that, in many cases, can replace animal experimentation, eliminating costs and related ethical issues. Organ-on-a-chip can also contain bacteria or cancer cells. This technology could be beneficial in dentistry for testing novel antibacterial substances and biomaterials, performing studies on inflammatory disease, or planning preclinical studies. A significant number of publications and reviews have been published on this topic. Still, to our knowledge, they mainly focus on the materials used for fabrication and the different patterns of the chip applied to the experimentations. This review presents the most recent applications of organ-on-a-chip models in dentistry, starting from the reconstituted dental tissues to their clinical applications and future perspectives.

3.
Gels ; 10(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38391440

RESUMO

This study aimed to evaluate the ability of photodynamic therapy, based on the use of a gel containing 5% delta aminolaevulinic acid (ALAD) for 45' followed by irradiation with 630 nm LED (PDT) for 7', to eradicate Candida albicans strains without damaging the gingiva. C. albicans oral strains and gingival fibroblasts (hGFs) were used to achieve these goals. The potential antifungal effects on a clinical resistant C. albicans S5 strain were evaluated in terms of biofilm biomass, colony forming units (CFU/mL) count, cell viability by live/dead analysis, and fluidity membrane changes. Concerning the hGFs, viability assays, morphological analysis (optical, scanning electronic (SEM), and confocal laser scanning (CLSM) microscopes), and assays for reactive oxygen species (ROS) and collagen production were performed. ALAD-mediated aPDT (ALAD-aPDT) treatment showed significant anti-biofilm activity against C. albicans S5, as confirmed by a reduction in both the biofilm biomass and CFUs/mL. The cell viability was strongly affected by the treatment, while on the contrary, the fluidity of the membrane remained unchanged. The results for the hGFs showed an absence of cytotoxicity and no morphological differences in cells subjected to ALAD-aPDT expected for CLSM results that exhibited an increase in the thickening of actin filaments. ROS production was augmented only at 0 h and 3 h, while the collagen appeared enhanced 7 days after the treatment.

4.
Int J Periodontics Restorative Dent ; 0(0): 1-20, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175917

RESUMO

INTRODUCTION: Tooth extractions can result in alveolar bone dimensional changes, necessitating additional bone grafting for implant placement. Alveolar Ridge Preservation (ARP) aims to counteract post-extraction changes. This study evaluates the bone regenerative properties of a freeze-dried bone allograft (FDBA) and the clinical outcomes of implants in grafted extraction sites. MATERIALS AND METHODS: This case series enrolled 33 patients undergoing single/multiple tooth extractions followed by ARP. Biopsies were harvested during implant placement for histologic and histomorphometric analysis. Clinical outcomes included marginal bone loss and Pink Esthetic Score (PES). RESULTS: 25 patients completed the study. FDBA augmented sockets exhibited new bone formation adjacent to graft particles. Implants (n=25) showed 100% survival and success rates at 1 and 2 years. PES improved significantly over time (p<.001), while marginal bone loss did not significantly differ at 1 and 2 years (p=.096). Specimens showed trabecular bone, residual FDBA particles, and marrow spaces. High magnification revealed immature bone and woven bone bridges around graft particles. No inflammatory cells were observed. CONCLUSIONS: The case series provides valuable insights into ARP performed with FDBA; implants were placed after 3 months of healing without any additional bone augmentation, the histologic outcomes were favorable, and implants were successful after a 2-year period of follow-up.

5.
J Dent ; 140: 104778, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951493

RESUMO

AIMS: The first aim of this study was to characterize the surface topography of a novel 3D-printed dental implant at the micro- and macro-level. Its second aim was to evaluate the osteogenic, angiogenic, and immunogenic responses of human oral osteoblasts (hOBs), gingival fibroblasts (hGFs), mesenchymal stem cells (hAD-MSCs), and monocytes to this novel implant surface. METHODS: A 3D-printed Ti-6Al-4 V implant was produced by selective laser melting and subjected to organic acid etching (TEST). It was then compared to a machined surface (CTRL). Its biological properties were evaluated via cell proliferation assays, morphological observations, gene expression analyses, mineralization assessments, and collagen quantifications. RESULTS: Scanning electron microscopy analysis showed that the TEST group was characterized by a highly interconnected porous architecture and a roughed surface. The morphological observations showed good adhesion of cells cultured on the TEST surface, with a significant increase in hOB growth. Similarly, the gene expression analysis showed significantly higher levels of osseointegration biomarkers. Picrosirius staining showed a slight increase in collagen production in the TEST group compared to the CTRL group. hAD-MSCs showed an increase in endothelial and osteogenic commitment-related markers. Monocytes showed increased mRNA synthesis related to the M2 (anti-inflammatory) macrophagic phenotype. CONCLUSIONS: Considering the higher interaction with hOBs, hGFs, hAD-MSCs, and monocytes, the prepared 3D-printed implant could be used for future clinical applications. CLINICAL RELEVANCE: This study demonstrated the excellent biological response of various cells to the porous surface of the novel 3D-printed implant.


Assuntos
Implantes Dentários , Células-Tronco Mesenquimais , Humanos , Porosidade , Monócitos , Osteoblastos , Fibroblastos , Células-Tronco Mesenquimais/metabolismo , Colágeno , Impressão Tridimensional , Titânio , Propriedades de Superfície
6.
Sci Rep ; 13(1): 22067, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086849

RESUMO

Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Fibroblastos , Biofilmes , Antibacterianos/farmacologia
7.
Gels ; 9(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37504463

RESUMO

This study aims to test a photodynamic protocol based on a gel containing aminolevulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs) and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the previous literature, ALAD-PDT showed solid antibacterial activity and proliferative induction on HGFs cultured on plates and HOBs cultured on a cortical lamina. PADMMs are used in dentistry and periodontology to treat gingival recessions and to increase the tissue thickness in the case of a thin biotype without the risks or postoperative discomfort associated with connective tissue grafts. However, one of the possible complications in this type of surgery is represented by bacterial invasion and membrane exposition during the healing period. We hypothesized that the addition of ALAD-PDT to PADMMs could enhance more rapid healing and decrease the risks connected with bacterial invasion. In periodontal surgery, PADMMs are inserted after a full-thickness flap elevation between the bone and the flap. Consequently, all procedures were performed in parallel on hOBs and hGFs obtained by dental patients. The group control (CTRL) was represented by the unexposed cells cultured on the membranes, group LED (PDT) were the cells subjected to 7 min of red LED irradiation, and ALAD-PDT were the cells subjected to 45 min of ALAD incubation and then to 7 min of red LED irradiation. After treatments, all groups were analyzed for MTT assay and subjected to histological examination at 3 and 7 days and to the SEM observations at 3, 7, and 14 days. Different bone mineralization assays were performed to quantify the effects of ALAD-PDT on hOBs: ALP activity, ALP gene expression, osteocalcin, and alizarin red. The effects of ALAD-PDT on hGFs were evaluated by quantifying collagen 1, fibronectin, and MMP-8. Results showed that ALAD-PDT promoted cellular induction, forming a dense cellular network on hOBs and hGFs, and the assays performed showed statistically significantly higher values for ALAD-PDT with respect to LED alone and CTRLs. In conclusion, ALAD-PDT could represent a promising aid for enhancing the healing of gingival tissues after PADMM applications.

8.
Int J Periodontics Restorative Dent ; 43(6): 675-685, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37347612

RESUMO

The primary aim of this study was to assess the histomorphometric outcomes of extraction sockets grafted with freeze-dried bone allograft (FDBA) and sealed with a collagen membrane after 3 months of healing in specific region of interest (ROI) areas. The secondary aims were to analyze the biomaterial resorption rate, the bone-to-biomaterial contact (BBC), and the area and perimeter of grafted particles compared with commercially available FDBA particles. Fifteen patients underwent tooth extractions and ridge preservation procedures performed with FDBA and a collagen membrane. Bone biopsy samples were harvested after 3 months at the time of implant placement for histologic and histomorphometric analysis. Two areas of concern (ROI1 and ROI2) with different histologic features were identified within the biopsy samples; ROI1, ROI2, and commercially available particles were analyzed and compared. The following parameters were analyzed: newly formed bone, marrow space, residual graft particles, perimeter and area of FDBA particles, and BBC. The histomorphometric analysis showed 35.22% ± 10.79% newly formed bone, 52.55% ± 16.06% marrow spaces, and 12.41% ± 7.87% residual graft particles. Moreover, the histologic data from ROI1 and ROI2 showed that (1) the mean percentage of BBC was 64.61% ± 27.14%; (2) the newly formed bone was significantly higher in ROI1 than in ROI2; (3) the marrow space was significantly lower in ROI1 than in ROI2; and (4) the FDBA particles in ROI1 sites showed significantly lower area and perimeter when compared to commercially available FDBA particles. This latter data led to the hypothesis that FDBA particles embedded in newly formed bone undergo a resorption/remodeling process.


Assuntos
Processo Alveolar , Aumento do Rebordo Alveolar , Humanos , Processo Alveolar/cirurgia , Processo Alveolar/patologia , Estudos de Coortes , Alvéolo Dental/cirurgia , Alvéolo Dental/patologia , Liofilização/métodos , Colágeno , Transplante Ósseo/métodos , Aloenxertos/patologia , Aloenxertos/transplante , Materiais Biocompatíveis , Aumento do Rebordo Alveolar/métodos , Extração Dentária
9.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175457

RESUMO

The use of biomaterial for tissue repair involves the interaction between materials and cells, and the coagulum formation represents the first step of tissue healing. This process is particularly critical in the oral cavity, where the wounds are immediately subjected to the masticatory mechanical stress, saliva invasion, and bacterial attack. Therefore, the present study aimed to explore the structural features and the biological activities of a hemostatic collagen sponge on human gingival fibroblasts (HGFs) and human oral osteoblasts (HOBs). The microstructure of the collagen sponge was characterized by a scanning electron microscope (SEM) and histological analysis. The porosity was also calculated. To investigate biological activities, HGFs and HOBs were cultured on the collagen sponges, and their adhesion was observed at SEM on the third day, while cell viability was investigated at the third and seventh days by Tetrazolium (MTT) assay. For osteoblasts seeded on collagen sponge the mineralization ability was also evaluated by alkaline phosphatase (ALP) assay at the seventh day, and by Alizarin red staining on the 14th. Furthermore, the gene expression of ALP and osteocalcin (OCN) was investigated after 3, 7 and 14 days. SEM images of the sponge without cells showed a highly porous 3D structure, confirmed by the measurement of porosity that was more than 90%. The samples cultured were characterized by cells uniformly distributed and adhered to the sponge surface. Proliferation ended up being promoted, as well as the mineralization ability of the osteoblasts, mainly at the mature stage. In conclusion, this collagen sponge could have a potential use for tissue healing.


Assuntos
Hemostáticos , Humanos , Porosidade , Hemostáticos/farmacologia , Diferenciação Celular , Proliferação de Células , Colágeno/química , Osteoblastos , Fibroblastos , Células Cultivadas
10.
J Funct Biomater ; 14(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976057

RESUMO

Guided bone regeneration (GBR) comprehends the application of membranes to drive bone healing and to exclude non-osteogenic tissues from interfering with bone regeneration. However, the membranes may be exposed to bacterial attack, with the risk of failure of the GBR. Recently, an antibacterial photodynamic protocol (ALAD-PDT) based on a gel with 5% 5-aminolevulinic acid incubated for 45 min and irradiated for 7 min by a LED light at 630 nm, also showed a pro-proliferative effect on human fibroblasts and osteoblasts. The present study hypothesized that the functionalization of a porcine cortical membrane (soft-curved lamina, OsteoBiol) with ALAD-PDT might promote its osteoconductive properties. TEST 1 aimed to verify the response of osteoblasts seeded on lamina with respect to the plate surface (CTRL). TEST 2 aimed to investigate the effects of ALAD-PDT on the osteoblasts cultured on the lamina. SEM analyses were performed to study the topographical characteristics of the membrane surface, the adhesion, and the morphology of cells at 3 days. The viability was assessed at 3 days, the ALP activity at 7 days, and calcium deposition at 14 days. Results showed the porous surface of the lamina and the increase in cell attachment of osteoblasts with respect to controls. The proliferation, the ALP, and bone mineralization activity of osteoblasts seeded on lamina resulted in being significantly higher (p < 0.0001) than controls. Results also showed an additional significative enhancement (p < 0.0001) in the proliferative rate in ALP and calcium deposition after applying ALAD-PDT. In conclusion, the functionalization of the cortical membranes cultured with osteoblasts with the ALAD-PDT improved their osteoconductive properties.

11.
Gels ; 9(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826295

RESUMO

BACKGROUND: In this ex vivo study, the aim was to evaluate the effects of ALAD and red light on Enterococcus faecalis in infected root canals using a special intracanal fiber. METHODS: A total of 70 extracted, single-rooted teeth were used. The teeth were decoronated at the length of the roots to approximately 15 mm and then instrumented. The apical foramen was sealed by composite resin, and the root canals were infected with a pure culture of E. faecalis ATCC 29212 for eight days at 37 °C. Following the contamination period, the roots were divided into seven groups, including the positive and negative control groups, and treated as follows: ALAD 45 min; red light activation 7 min; ALAD 45 min and red-light activation 7 min; sodium hypochlorite 2.5% 15 min; sodium hypochlorite 1% 15 min. The samples were taken by three sterile paper points, transferred to tubes containing 1 mL of PBS, and immediately processed for the number of colony-forming units and the cell viability by using live/dead. RESULTS: The best treatment is obtained with 2.5% NaOCl. Except for ALAD + red light vs. 1% NaOCl, a statistically significant difference is recorded for all treatments. The combination of 2.5% NaOCl and ALAD + 7 min irradiation produces an evident killing effect on the E. faecalis cells. On the other hand, 1% NaOCl is ineffective for the viability action, with 25% of dead cells stained in red. CONCLUSIONS: This ex vivo study shows that ALAD gel with light irradiation is an efficacious protocol that exerts a potent antibacterial activity against E. faecalis in infected root canals.

12.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834684

RESUMO

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


Assuntos
Células Endoteliais , Fibroblastos , Resveratrol/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Cicatrização , RNA Mensageiro/metabolismo
13.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835067

RESUMO

The use of collagen membranes has remained the gold standard in GTR/GBR. In this study, the features and the biological activities of an acellular porcine dermis collagen matrix membrane applicable during dental surgery were investigated, and also by applying hydration with NaCl. Thus, two tested membranes were distinguished, the H-Membrane and Membrane, compared to the control cell culture plastic. The characterization was performed by SEM and histological analyses. In contrast, the biocompatibility was investigated on HGF and HOB cells at 3, 7, and 14 days by MTT for proliferation study; by SEM and histology for cell interaction study; and by RT-PCR for function-related genes study. In HOBs seeded on membranes, mineralization functions by ALP assay and Alizarin Red staining were also investigated. Results indicated that the tested membranes, especially when hydrated, can promote the proliferation and attachment of cells at each time. Furthermore, membranes significantly increased ALP and mineralization activities in HOBs as well as the osteoblastic-related genes ALP and OCN. Similarly, membranes significantly increased ECM-related and MMP8 gene expression in HGFs. In conclusion, the tested acellular porcine dermis collagen matrix membrane, mainly when it is hydrated, behaved as a suitable microenvironment for oral cells.


Assuntos
Derme Acelular , Técnicas de Cultura de Células , Animais , Derme Acelular/metabolismo , Colágeno/química , Colágeno/farmacologia , Fibroblastos/metabolismo , Osteoblastos/metabolismo , Suínos
14.
Gels ; 8(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354605

RESUMO

The present study aims to discuss the main factors involving the use of 5-aminolevulinic acid together with red LED light and its application in endodontic treatment through a narrative review and a case report. Persistence of microorganisms remaining on chemical-mechanical preparation or intracanal dressing is reported as the leading cause of failure in endodontics. Photodynamic therapy has become a promising antimicrobial strategy as an aid to endodontic treatment. Being easy and quick to apply, it can be used both in a single session and in several sessions, as well as not allowing forms of microbial resistance. 5-aminolevulinic acid in combination with red LED light has recently been studied in many branches of medicine, with good results against numerous types of bacteria including Enterococuss faecalis. The case report showed how bacterial count of CFU decreased by half (210 CFU/mL), after 45 min of irrigation with a gel containing 5% of 5-aminolevulinic acid compared to the sample before irrigation (420 CFU/mL). The subsequent irradiation of red LED light for 7 min, the bacterial count was equal to 0. Thus, it is concluded that the use of 5-aminolevulinic acid together with red LED light is effective in endodontic treatment.

15.
Lasers Med Sci ; 37(9): 3671-3679, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36192667

RESUMO

This study aimed to evaluate the effects of a new photodynamic protocol (ALAD-PDT) on primary human osteoblasts (hOBs). The ALAD-PDT protocol consists of a heat-sensitive gel with 5% 5-delta aminolevulinic acid commercialized as Aladent (ALAD), combined with 630 nm LED. For this purpose, the hOBs, explanted from human mandible bone fragments, were used and treated with different ALAD concentrations (10%, 50%, 100% v/v) incubated for 45 min and immediately afterwards irradiated with a 630 nm LED device for 7 min. The untreated and unirradiated cells were considered control (CTRL). The cellular accumulation of the photosensitizer protoporphyrin IX (PpIX), the proliferation, the alkaline phosphatase (ALP) activity, and the calcium deposition were assessed. All concentrations (10, 50, 100%) determined a significant increment of PpIX immediately after 45 min of incubation (0 h) with the highest peak by ALAD (100%). The consequent 7 min of light irradiation caused a slight decrease in PpIX. At 48 h and 72 h, any increment of PpIX was observed. The concentration 100% associated with LED significantly increased hOB proliferation at 48 h (+ 46.83%) and 72 h (+ 127.75%). The 50% and 100% concentrations in combination to the red light also stimulated the ALP activity, + 12.910% and + 14.014% respectively. The concentration 100% with and without LED was selected for the assessment of calcium deposition. After LED irradiation, a significant increase in calcium deposition was observed and quantified (+ 72.33%). In conclusion, the ALAD-PDT enhanced proliferation, the ALP activity, and mineralized deposition of human oral osteoblasts, highlighting a promising potential for bone tissue regeneration.


Assuntos
Ácido Aminolevulínico , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacologia , Fotoquimioterapia/métodos , Cálcio , Protoporfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Osteoblastos
16.
Gels ; 8(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005091

RESUMO

This study aimed to evaluate the effects of a new photodynamic protocol (ALAD-PDT), consisting of 5% 5-aminolevulinic acid-gel and 630 nm-LED, already used for antibacterial effects in the treatment of periodontitis, on human gingival fibroblasts (HGF) and primary human osteoblasts (HOB). HGF and HOB were incubated with different ALAD concentrations for 45 min, and subsequently irradiated with 630 nm-LED for 7 min. Firstly, the cytotoxicity at 24 h and proliferation at 48 and 72 h were assessed. Then the intracellular content of the protoporphyrin IX (PpIX) of the ROS and the superoxide dismutase (SOD) activity were investigated at different times. Each result was compared with untreated and unirradiated cells as the control. Viable and metabolic active cells were revealed at any concentrations of ALAD-PDT, but only 100-ALAD-PDT significantly enhanced the proliferation rate. The PpIX fluorescence significantly increased after the addition of 100-ALAD, and decreased after the irradiation. Higher ROS generation was detected at 10 min in HGF, and at 30 min in HOB. The activity of the SOD enzyme augmented at 30 min in both cell types. In conclusion, ALAD-PDT not only showed no cytotoxic effects, but had pro-proliferative effects on HGF and HOB, probably via ROS generation.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35627749

RESUMO

Implant surfaces are known to influence the osseointegration process; therefore, their modifications represent an important subject of investigation. On this basis, the purpose of this study was to evaluate the response of human oral osteoblasts (hOBs) to three different GR4 titanium discs: Machined, double-etched (Osteopore), and double-etched, surface-enriched with calcium and phosphorus (CaP) (Nanopore). The superficial topography was investigated with scanning electron microscopy (SEM) and the sessile drop technique. To test cellular response and osteoinductive properties, the following points were evaluated: (i) proliferation by MTS assay after 2 and 5 days; (ii) adhesion by multiphoton microscopy at day 2; (iii) the interaction with Ti discs by blue toluidine staining at day 5; (iv) alkaline phosphatase (ALP) activity by ALP assay after 14 days; (v) calcium deposition by alizarin red staining and by cetylpyridinium chloride after 14 days. The SEM analysis showed that Nanopore and Osteopore surfaces were characterized by the same micro-topography. Nanopore and Osteopore discs, compared to Machined, stimulated higher osteoblast proliferation and showed more osteoinductive properties by promoting the ALP activity and calcium deposition. In conclusion, the CaP treatment on DAE surfaces seemed to favor the oral osteoblast response, encouraging their use for in vivo applications.


Assuntos
Nanoporos , Titânio , Cálcio , Cálcio da Dieta , Humanos , Osteoblastos , Fósforo/farmacologia , Propriedades de Superfície , Titânio/farmacologia
18.
Cells ; 11(5)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269445

RESUMO

Thyroid diseases have a complex and multifactorial aetiology. Despite the numerous studies on the signals referable to the malignant transition, the molecular mechanisms concerning the role of oxidative stress remain elusive. Based on its strong oxidative power, H2O2 could be responsible for the high level of oxidative DNA damage observed in cancerous thyroid tissue and hyperactivation of mitogen-activated protein kinase (MAPK) and PI3K/Akt, which mediate ErbB signaling. Increased levels of 8-oxoG DNA adducts have been detected in the early stages of thyroid cancer. These DNA lesions are efficiently recognized and removed by the base excision repair (BER) pathway initiated by 8-oxoG glycosylase1 (OGG1). This study investigated the relationships between the EGFR and OGG1-BER pathways and their mutual regulation following oxidative stress stimulus by H2O2 in human thyrocytes. We clarified the modulation of ErbB receptors and their downstream pathways (PI3K/Akt and MAPK/ERK) under oxidative stress (from H2O2) at the level of gene and protein expression, according to the mechanism defined in a human non-pathological cell system, Nthy-ori 3-1. Later, on the basis of the results obtained by gene expression cluster analysis in normal cells, we assessed the dysregulation of the relationships in a model of papillary thyroid cancer with RET/PTC rearrangement (TPC-1). Our observations demonstrated that a H2O2 stress may induce a physiological cross-regulation between ErbB and OGG1-BER pathways in normal thyroid cells (while this is dysregulated in the TPC-1 cells). Gene expression data also delineated that MUTYH gene could play a physiological role in crosstalk between ErbB and BER pathways and this function is instead lost in cancer cells. Overall, our data on OGG1 protein expression suggest that it was physiologically regulated in response to oxidative modulation of ErbB, and that these might be dysregulated in the signaling pathway involving AKT in the progression of thyroid malignancies with RET/PTC rearrangements.


Assuntos
DNA Glicosilases , Neoplasias da Glândula Tireoide , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-35270740

RESUMO

AIM OF THE STUDY: The aim was to evaluate the effects of two LED devices, TL-01 and TL-03 in photodynamic therapy (PDT), on Enterococcus faecalis and on human gingival fibroblasts (HGFs). TL-01, characterized by a single emitter, irradiates one periodontal site at a time, whereas the multi-led device (TL-03) irradiates all vestibular sites of a single arch at a time. METHODS: E. faecalis bacterial suspensions and HGFs were incubated for 45 min with Aladent gel (ALAD) containing 5-aminolevulinic acid and then exposed to LED devices (ALAD-PDT), having different distance and timing of irradiation (TL-01 N (0.5 mm, for 7 min), TL-03 N (0.5 mm, 15 min) and TL-03 F (30.0 mm, 15 min)). For bacterial suspension, the colony forming units and the live/dead staining were evaluated after 24 h, while the protoporphyrin IX (PpIX) content was monitored in all phases of the experimentation. For HGFs, the cell viability, proliferation, cell morphology, and adhesion were evaluated at 24 h. RESULTS: Both TL-01 and TL-03 showed a significant reduction of bacterial load. The photoinactivation was inversely proportional to the PpIX accumulation. TL-01 and TL-03 promoted proliferation and adhesion of HGFs. CONCLUSIONS: Both tested devices for ALAD-PDT were equally effective in significantly reducing Enterococcus faecalis growth and in promoting HGFs proliferation and adhesion, in vitro.


Assuntos
Fotoquimioterapia , Enterococcus faecalis , Fibroblastos , Gengiva , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
20.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885156

RESUMO

Colorectal cancer (CRC) is a multistep process that arises in the colic tissue microenvironment. Oxidative stress plays a role in mediating CRC cell survival and progression, as well as promoting resistance to therapies. CRC progression is associated with Wnt/ß-Catenin signaling dysregulation and loss of proper APC functions. Cancer recurrence/relapse has been attributed to altered ROS levels, produced in a cancerous microenvironment. The effect of oxidative distress on Wnt/ß-Catenin signaling in the light of APC functions is unclear. This study evaluated the effect of H2O2-induced short-term oxidative stress in HCT116, SW480 and SW620 cells with different phenotypes of APC and ß-Catenin. The modulation and relationship of APC with characteristic molecules of Wnt/ß-Catenin were assessed in gene and protein expression. Results indicated that CRC cells, even when deprived of growth factors, under acute oxidative distress conditions by H2O2 promote ß-Catenin expression and modulate cytoplasmic APC protein. Furthermore, H2O2 induces differential gene expression depending on the cellular phenotype and leading to favor both Wnt/Catenin-dependent and -independent signaling. The exact mechanism by which oxidative distress can affect Wnt signaling functions will require further investigation to reveal new scenarios for the development of therapeutic approaches for CRC, in the light of the conserved functions of APC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA