Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 137, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866769

RESUMO

New measurements combine spatial and temporal information from optical transition radiation to estimate the three-dimensional structure of electron bunches from a laser wakefield accelerator.

2.
Light Sci Appl ; 11(1): 239, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906214

RESUMO

Plasma accelerators driven by high-power lasers can provide high-energy electron beams on a dramatically smaller scale than conventional radio-frequency accelerators. However, the performance of these accelerators is fundamentally limited by the diffraction of the laser. Laser-generated plasma waveguides can mitigate this problem and, combined with a controlled injection method for electrons, highlight the potential of novel laser-plasma optics.

3.
J Radiol Prot ; 40(4)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32702682

RESUMO

The 'Centre for Advanced Laser Applications' (CALA) is a new research institute for laser-based acceleration of electron beams for brilliant x-ray generation, laser-driven sub-nanosecond bunches of protons and heavy ions for biomedical applications like imaging and tumour therapy as well as for nuclear and high-field physics.The radiation sources emerging from experiments using the up to 2.5 petawatt laser pulses with 25 femtosecond duration will be mixed particle-species of high intensity, high energy and pulsed, thus posing new challenges compared to conventional radiation protection. Such worldwide pioneering laser experiments result in source characteristics that require careful a-priori radiation safety simulations.The FLUKA Monte-Carlo code was used to model the five CALA experimental caves, including the corridors, halls and air spaces surrounding the caves. Beams of electrons (<5 GeV), protons (<200 MeV),12C (<400MeV/u) and197Au (<10MeV/u) ions were simulated using spectra, divergences and bunch-charges based on expectations from recent scientific progress.Simulated dose rates locally can exceed 1.5 kSv h-1inside beam dumps. Vacuum pipes in the cave walls for laser transport and extraction channels for the generated x-rays result in small dose leakage to neighboring areas. Secondary neutrons contribute to most of the prompt dose rate outside caves into which the beam is delivered. This secondary radiation component causes non-negligible dose rates to occur behind walls to which large fluences of secondary particles are directed.By employing adequate beam dumps matched to beam-divergence, magnets, passive shielding and laser pulse repetition limits, average dose rates in- and outside the experimental building stay below design specifications (<0.5µSv h-1) for unclassified areas,<2.5µSv h-1for supervised areas,<7.5µSv h-1maximum local dose rate) and regulatory limits (<1mSv a-1for unclassified areas).


Assuntos
Proteção Radiológica , Lasers , Método de Monte Carlo , Aceleradores de Partículas , Prótons , Proteção Radiológica/métodos , Raios X
4.
Light Sci Appl ; 6(11): e17086, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167214

RESUMO

Technology based on high-peak-power lasers has the potential to provide compact and intense radiation sources for a wide range of innovative applications. In particular, electrons that are accelerated in the wakefield of an intense laser pulse oscillate around the propagation axis and emit X-rays. This betatron source, which essentially reproduces the principle of a synchrotron at the millimeter scale, provides bright radiation with femtosecond duration and high spatial coherence. However, despite its unique features, the usability of the betatron source has been constrained by its poor control and stability. In this article, we demonstrate the reliable production of X-ray beams with tunable polarization. Using ionization-induced injection in a gas mixture, the orbits of the relativistic electrons emitting the radiation are reproducible and controlled. We observe that both the signal and beam profile fluctuations are significantly reduced and that the beam pointing varies by less than a tenth of the beam divergence. The polarization ratio reaches 80%, and the polarization axis can easily be rotated. We anticipate a broad impact of the source, as its unprecedented performance opens the way for new applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA