Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(25): e202303128, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37186009

RESUMO

Atroposelective cross-coupling is one of the most appealing routes to construct axially chiral binaphthyl molecules due to the modular and succinct nature. Although transition-metal-catalyzed cross-couplings offer reliable synthetic means, alternative reaction modes that could be applied to broader substrate range without their pre-functionalization is highly desirable. Herein we show that the application of chiral Brønsted acid catalyst as organocatalyst could accomplish cross-coupling of 1-azonaphthalenes and 2-naphthols with high efficiency, exclusive C4-selectivity as well as excellent enantioselectivity and functional group compatibility. The identification of acylimidazolinone auxiliary for azo activating group, effective remote catalyst control and arene resonance effect synergistically play key roles in the development of this method. The utility is further demonstrated by transformations of the products into other binaphthyl compounds with perfectly retained axial chirality.


Assuntos
Ácidos , Naftóis , Naftóis/química , Catálise , Estereoisomerismo
2.
Chem Commun (Camb) ; 53(67): 9344-9347, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28783200

RESUMO

Efficient silylation reactions of propargyl epoxides catalyzed by copper catalysts have been developed. Under mild reaction conditions, tri- and tetra-substituted functionalized allenols and alkenes could be selectively obtained in moderate to high yields via tuning the bases and solvents used in the reactions. This work provides straightforward and efficient approaches to the synthesis of multifunctionalized 2,3-allenols and stereodefined alkenes from the same starting material of propargyl epoxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA